

e-SAF

Produktionspfade und Regulatorik

(Fischer-Tropsch- und Methanol-Route)

Dr. Harry Lehmann

Frankfurt – Oktober 2025

PtX Lab Lausitz

Praxislabor für Grund- und Kraftstoffe aus grünem Wasserstoff

Gegründet in 2021

Im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWE)

Kompetenzzentrum

 Ein Geschäftsbereich der Zukunft – Umwelt – Gesellschaft (ZUG) gGmbH, einer bundeseigenen Dienstleistungsgesellschaft

Akteur im Strukturwandel

 Über 35 Mitarbeitende unterstützen die nachhaltige Strukturentwicklung in der Lausitz

PtX Lab Lausitz

Think and Do Tank for Fuels and Basic Materials from Green Hydrogen

Opened 2021

On behalf of the Federal Ministry for Economic Affairs and Climate Action (BMWK)

Competence Centre

 A business unit of Zukunft-Umwelt-Gesellschaft (ZUG) gGmbH, a federal-owned service company

Player in Structural Development

Over 30 employees support sustainable structural development in the Lusatia region and beyond

Unsere Mission

Förderung des PtX-Markhochlaufs

Wissensplattform für Industrie, Politik und Wissenschaft

Analysieren, beraten und initiieren

Untersuchung einer nachhaltigen PtX-Produktion

Gestaltung des ökonomischen und rechtlichen Rahmens

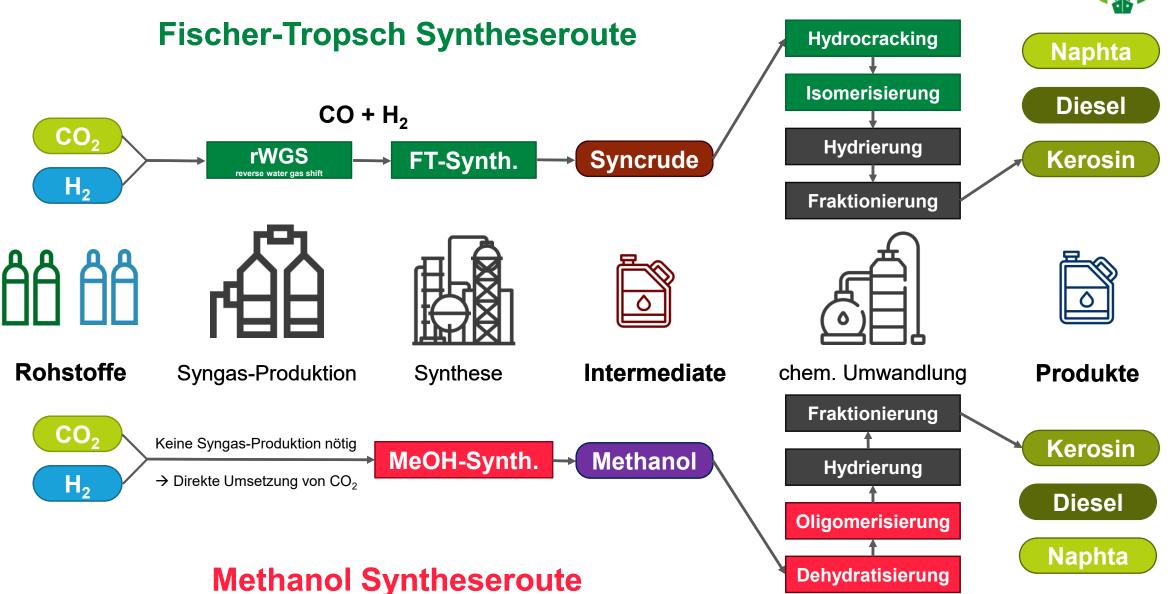
Fokus auf die gesamte Wertschöpfungskette

SAF - Verfahren und Rohstoffe

Sustainable aviation fuels (SAF)

Strom (erneuerbare Energien)

Biologische Rohstoffquellen


Verfahren	Ausgangsstoffe
Fischer-Tropsch (FT)	Wasserstoff (H ₂) aus EE Kohlendioxid (CO ₂)
Methanol-Route (MeOH)	Wasserstoff (H ₂) aus EE Kohlendioxid (CO ₂)

Liefert synthetisches Kerosin

Verfahren	Ausgangsstoffe
HEFA-SPK (Hydroprocessed Esters and Fatty Acids- Synthetic Paraffinic Kerosene)	Pflanzenöle, tierische Fette, gebrauchte Speiseöle
FT-SPK / FT-SKA (Fischer-Tropsch Synthetic Paraffinic Kerosene / Synthetic Kerosene with Aromatics)	Erneuerbare Biomasse
AtJ-SPK (Alcohol to Jet Synthetic Paraffinic Kerosene)	Alkohol aus Biomasse/Zucker
HC-HEFA-SPK (Hydroprocessed Hydrocarbons)	Algen

Fischer-Tropsch vs. MeOH-Syntheseroute

Zusammenfassung PtL-Kerosinherstellug

Fischer-Tropsch

Vorteile

- Nahezu kompletter CO₂-Umsatz (99%)
- Prozess auf hohe Kerosinausbeute gut einstellbar
- Homogene Produktverteilung des synth. Kerosins
- state of the art-Technologie mit Synergien zu bereits bestehenden Raffinerien
- → Bspw. Naphta in Steamcracker zur Erzeugung von Aromaten, Olefinen

Nachteile

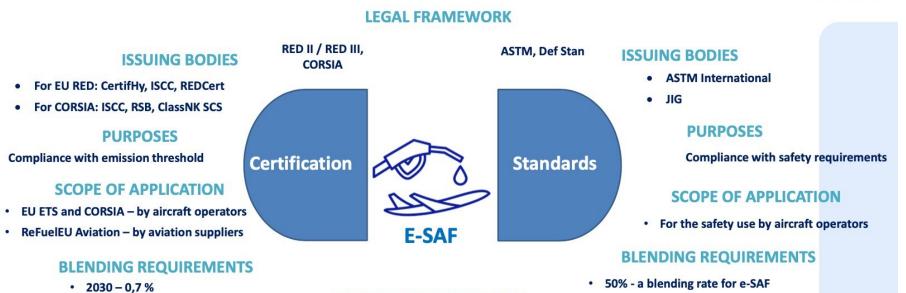
- Kein direkter CO₂-Umsatz → Synthesegas benötigt
- hoher Energiebedarf rWGS (CO₂ + H₂ → CO + H₂O)
- hoher Anteil an Nebenprodukten (Naphta, Diesel)
- Geringes Potential f
 ür noch h
 öhere Kerosinausbeute

Methanol-Route

Vorteile

- direkter CO₂-Umsatz → keine Synthesegas-Erzeugung
- geringerer Energiebedarf der einzelnen Prozesse
- Methanol-Economy MeOH als zukünftige Plattformchemikalie für 1. Luftfahrt, 2. Seeverkehr und 3. chemische Industrie
- → Methanol-to-Aromatics (MtA) liefert nötige Aromaten für Kerosin
- → Methanol-to-Olefins (MtO) liefert Olefine für chem. Industrie

Nachteile


- Schlechter CO₂-Umsatz (85%) durch *MeOH-to-Kerosene*
- ungünstige Produktverteilung des synth. Kerosins
- bisher auf hohe Benzinausbeute optimiert (*Mobil-Prozess*)
- hoher Betriebsdruck (~75 bar) und first-pass Umsatz (<25%) im MeOH-Reaktor

"Regelungen"

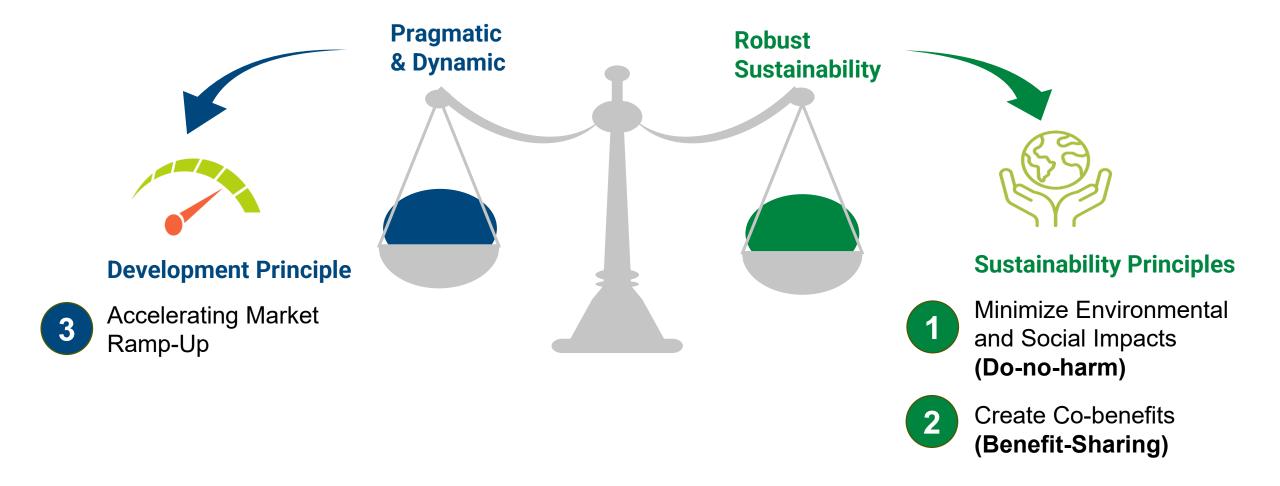
Interaction between certification and standards for e-SAF

• 2032 – 1,2%

CONSEQUENCES FOR NONCOMPLIANCE

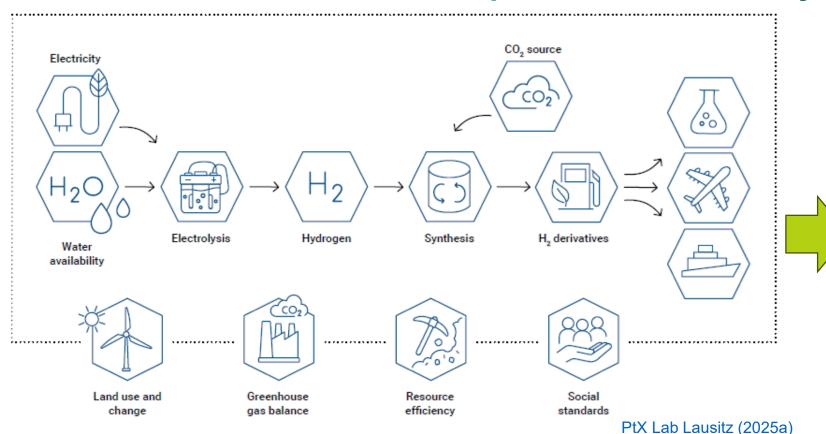
· 2035 - 5%

- 2040 10%
- 2045 15%
- 2050 35%
- Penalties for the aviation fuel suppliers under ReFuelEU Aviation.
- Payment for GHG emissions by the aircraft operators.


· Fuel is not allowed for the use.

Maryna Hritsyshyna

PtX Lab Approach and Principles


Principles for a **fast** and **sustainable** market ramp-up of RFNBOs

Sustainabilty Aspects for RFNBOs

RFNBOs value chain and it's impact on sustainability

Sustainability Aspects

Electricity requirements

GHG reduction

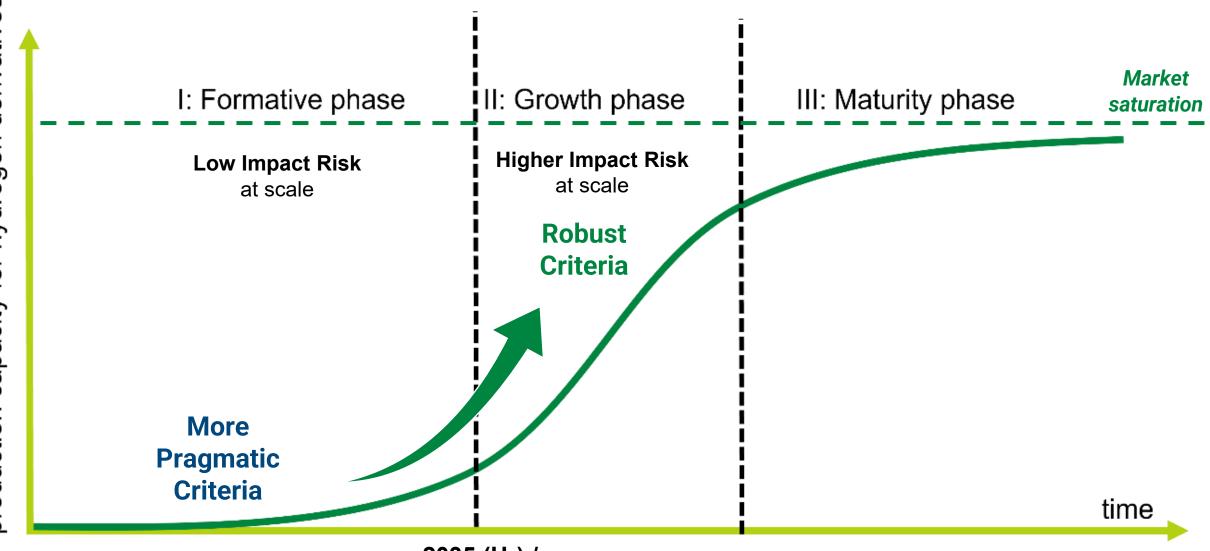
Carbon/nitrogen source

Resources

Water use

Land use & change

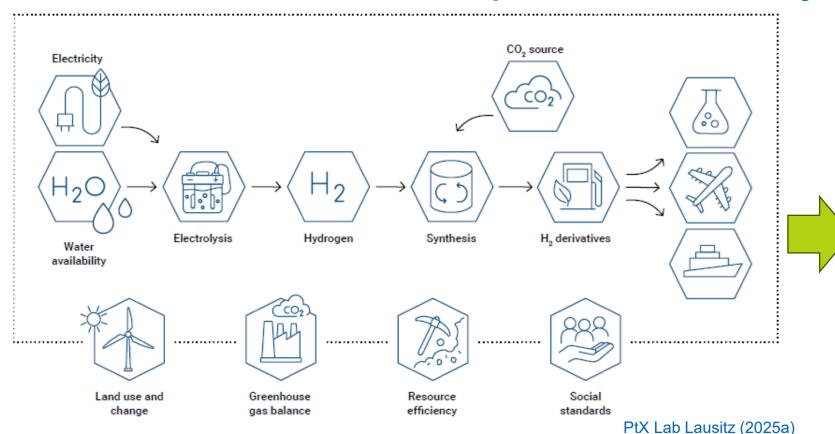
Labour


Standard of living

Society

Legality

Time-phased dynamic sustainability Criteria



2035 (H₂) / 2040 (H₂ derivatives)

Sustainabilty Aspects for RFNBOs

RFNBOs value chain and it's impact on sustainability

Sustainability Aspects

Electricity requirements

GHG reduction

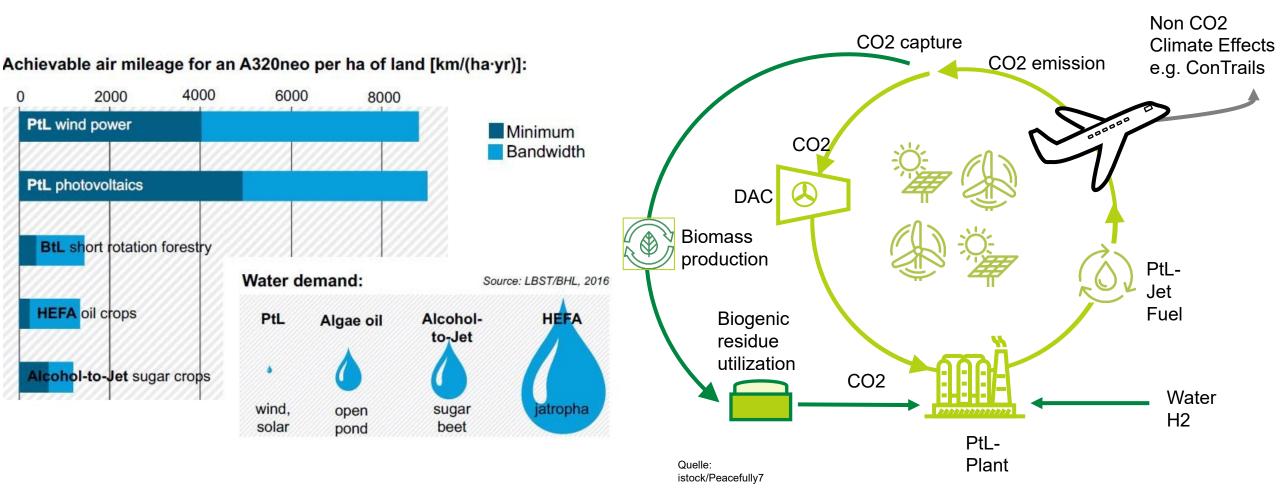
Carbon/nitrogen source

Resources

Water use

Land use & change

Labour


Standard of living

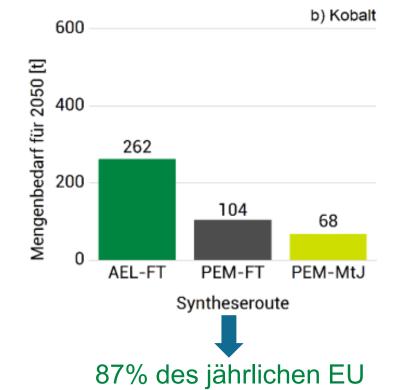
Society

Legality

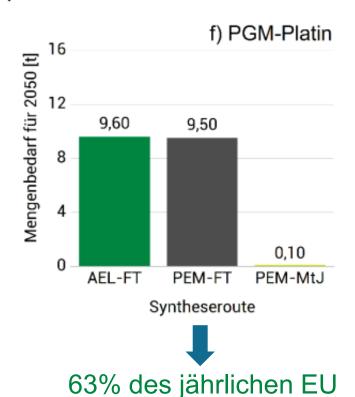
Sustainable -> Land, Water, CO₂

Source: UBA - LBST - PtX Lab

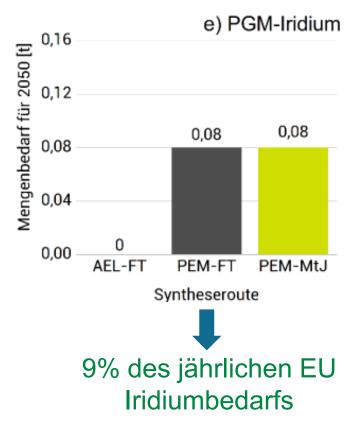
Metalle - Bedarf und Versorgungsrisiko



In der vorliegenden Studie werden somit 15 Rohstoffe und Rohstoffgruppen betrachtet:

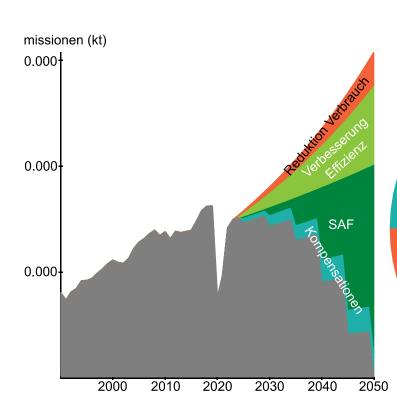

- Aluminium*
- Blei*
- Chrom*
- Eisen*
- Kobalt*

- Kupfer*
- Magnesium*
- Mangan
- Nickel*
- Phosphor


- Titan
- Zink*
- Platingruppenmetalle (PGM)*
- Leichte Seltene Erden (LREE)
- Schwere Seltene Erden (HREE)

Kobaltbedarfs

Platinbedarfs


Markthochlauf muss gestern beginnen!

Ideen zum Instrumentarium ...

- Verlässliche und langfristige finanzielle und ordnungspolitische - Rahmenbedingungen
- Aufbau von Produktionskapazitäten mittels einem Kapazitätsmarkt – analog zum Strommarkt.
- Finanzquellen Umlagen und CO2 Preise
- Book and Claim ...

Publikationen des PtX Lab Lausitz (Auswahl)

PtX Lab Study

"Ressourcenbedarf und –verfügbarkeit für treibhausgasneutralen Flugverkehr

PtX Lab Briefing "Grüne Wasserstoffderivate -Handlungsempfehlungen"

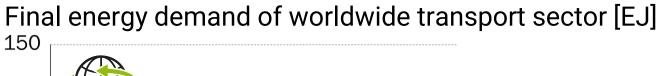
Das PtX Lab Lausitz ist ein Geschäftsbereich der Zukunft – Umwelt – Gesellschaft gGmbH (ZUG) im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWE).

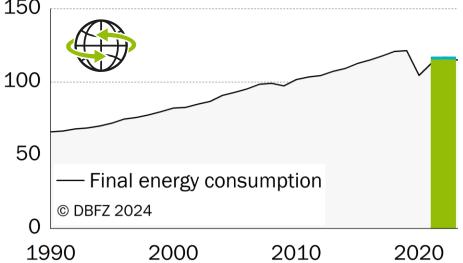
Alle Informationen und Hinweise in dieser Veröffentlichung stammen – wenn nicht anders gekennzeichnet – ausschließlich vom PtX Lab Lausitz und seinen Mitarbeitenden.

Danke für Ihre Aufmerksamkeit

Bio-SAF | Produktionspfade und regulatorische Vorgaben

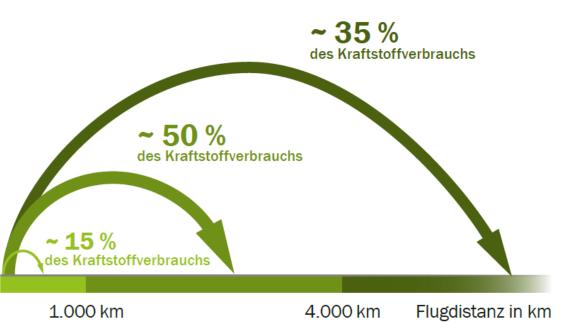
Kati Görsch


3. Konferenz Nachhaltiger Luftverkehr, 3. November 2025, Frankfurt (Main)



Status quo

Globaler Endenergiebedarf



Fuel consumption

	2023
Aviation	13 EJ

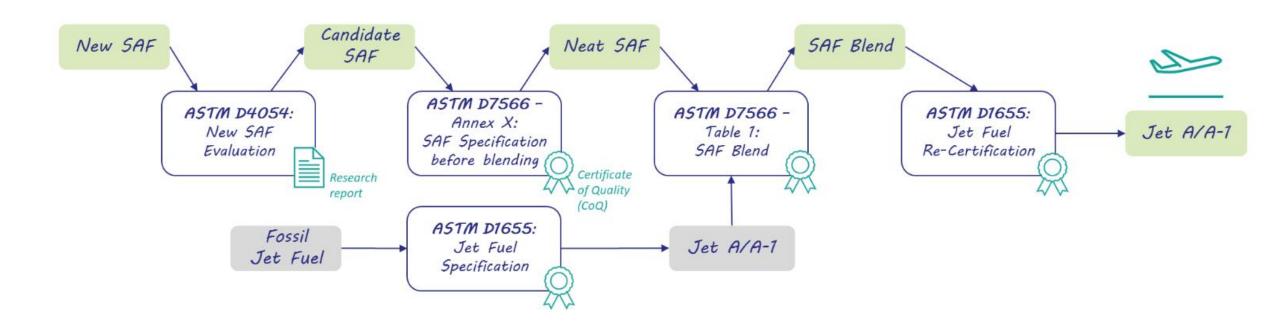
Calculation; 1 Mtoe = 41,87 PJ = 11,63 TWh

Source: Schröder, J.; Görsch, K.; Lenz, C. N. (2025): Herausforderung Energiewende im Verkehr. In: Schröder, J.; Görsch, K. (Hrsg.) (2025): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 4-21. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27 und Eigene Abbildung nach [Batteiger V., Penke C. (2025): Impuls | Energiewende in der Luftfahrt – Technische Herausforderungen. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 17-18. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27]

TRL / FRL

Technologie- und Kraftstoffentwicklung

Technologie- entwicklung	Technologi	egrundlagen	Labor / Te	echnikum	Pilotanlage	Der	moanlage	First-of-a-kind		Kommerziell	
Technologiestadien (vereinfacht)	Wissensentwicklun modernster Literati	ur ermittlung und Identifizierung von Technologien für Teil- Gesamtprozess, Produkt Unsicherheiten unter idealisierten prozesse, Aufdecken von Tests (auch im Dauerbet		zess, Produktion für	Vollständige Demonstration der Bereit-	Technologie kommerziell verfügbar					
	 		Versuchsbedingung	en	Unsicherheiten in Teiltechnologien, Sammlung von Erfahrungen im Prozessverständnis		stellung unter kommerziellen Bedingungen			Erweiteru	ng nach IEA
								 		Internationale Integration	Vorhersehbares Wachstum
Innovationsstufen	Grundlagenfor	schung	Angewandte For	schung		Technische	Entwicklung		Markteint	ritt Mar	ktetablierung
Technology Readiness Level (TRL)	1 Beobachtung des Funktions- prinzips	2 Entwicklung des Technologie- konzepts	3 Experimenteller Nachweis des Technologie- konzepts	4 Technologie- validierung im Labor/Technikum	5 Technologie- validierung unter relevanten Bedingungen	6 Technologie- demonstration unter relevanten Bedingungen	7 Demonstration eines Prototyps in Betriebsumgebung	8 Qualifizierung des Gesamtsystems unter realen Bedingungen	9 Erfolgsnachweis des Gesamtsystems		11 Marktstabilität
Fuel Readiness Level (FRL)		1 Grundlagen dokumentiert	2 Technologie- konzept definiert	3 Konzept in Testphase	4 Vorläufige technische Evaluation	5 Prozess- validierung	6 Technische Evaluation im Großmaßstab	7 Kraftstoff- zulassung	8 Kommerziali- sierung validiert	9 Produktions- kapazitäten etabliert	
Typische Realisierung bis Markteinführung	(ezeiträume				8 bis > 15 Jain	e	3 bis 6 Jaine		1 bis 4 Jaine		
Kraftstoffstadien (vereinfacht)			gn, Rohstoffanalyse ur genschaften analysier		Untersuchung der m schaften, Analyse de schaften		Kraftstoffbewertung Bedingungen und Q relevanten Standard	ualifizierung nach	Geschäftsmodell validiert, Kaufver- trag geschlossen	Anlagenbetrieb im kommerziel- len Maßstab	
Kraftstoffentwicklung			Т	echnologiephas	e		Kraftstoffqı	ualifizierung	Einsat	zphase	© DBFZ 2024


Quelle: Hauschild, S.; Costa de Paiva, G.; Tuschewitzki, W.; Prieß, T.; Mendler, F.; Neuling, U.; Zitscher, T.; Klüpfel, C.; Köchermann, J.; Thuneke, K.; Görsch, K. (2025): Technologien zur Kraftstoffbereitstellung. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 54-76. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27

Standardisierung

Marktzugangsbedingung für SAF

Strenger Prüf- und Zertifizierungsprozess

ASTM D7566

Überblick über Konversionspfade für SAF

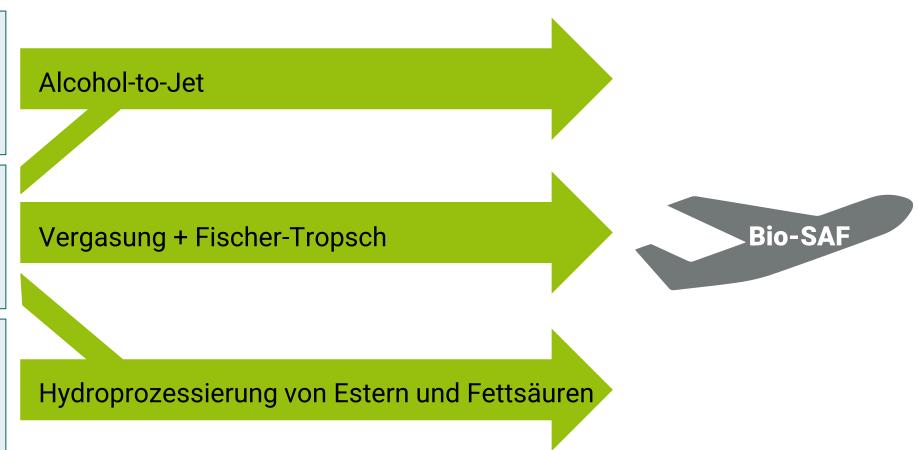
	Konversionsprozess	Abkürzung	Max. Blendrate
Annex A1	Fischer-Tropsch hydroprozessiertes SPK	FT	50 %
Annex A2	SPK aus hydroprozessiertem HEFA	HEFA	50 %
Annex A3	Synthetisierte Iso-Paraffine aus hydroprozessierten fermentierten Zuckern	SIP	10 %
Annex A4	Synthetisiertes Kerosin mit Aromaten aus der Alkylierung von leichten Aromaten aus Nicht-Erdölquellen	FT-SKA	50 %
Annex A5	Alkohol-to-Jet-SPK	ATJ-SPK	50 %
Annex A6	Katalytische Hydrothermolyse	CHJ	50 %
Annex A7	SPK aus Kohlenwasserstoff-hydroprozessiertem HEFA	HC-HEFA-SPK	10 %
Annex A8	Synthetisiertes Kerosin mit Aromaten aus dem ATJ-Prozess	ATJ-SKA	

- Weiterhin: Co-Prozessierung in konventionellen Erdölraffinerien (5 bis 10 % Blendrate)
- Evaluierung weiterer Konversionspfade bzw. der Erhöhung der Blendraten

Technologien

Haupt-Konversionspfade für Bio-SAF

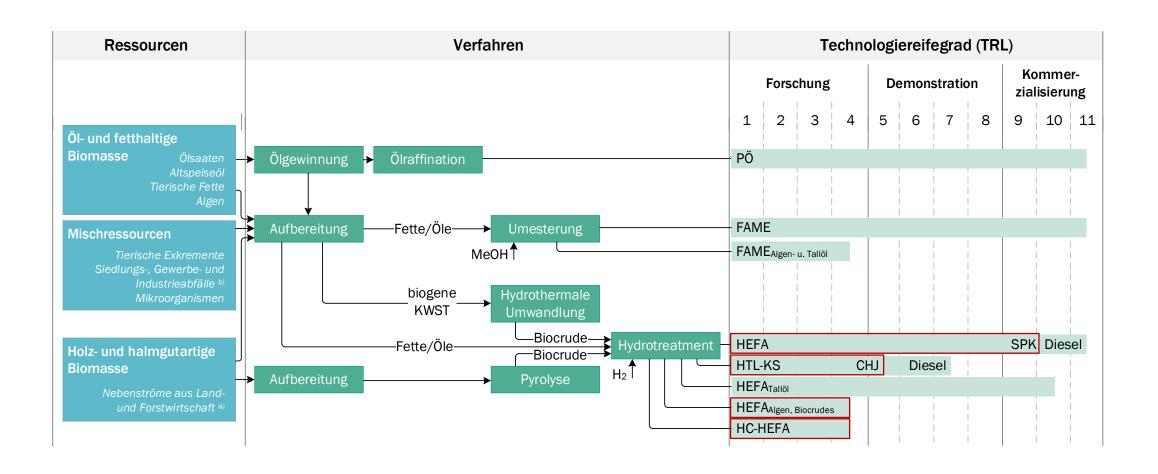
Zucker- und stärkehaltige Biomasse



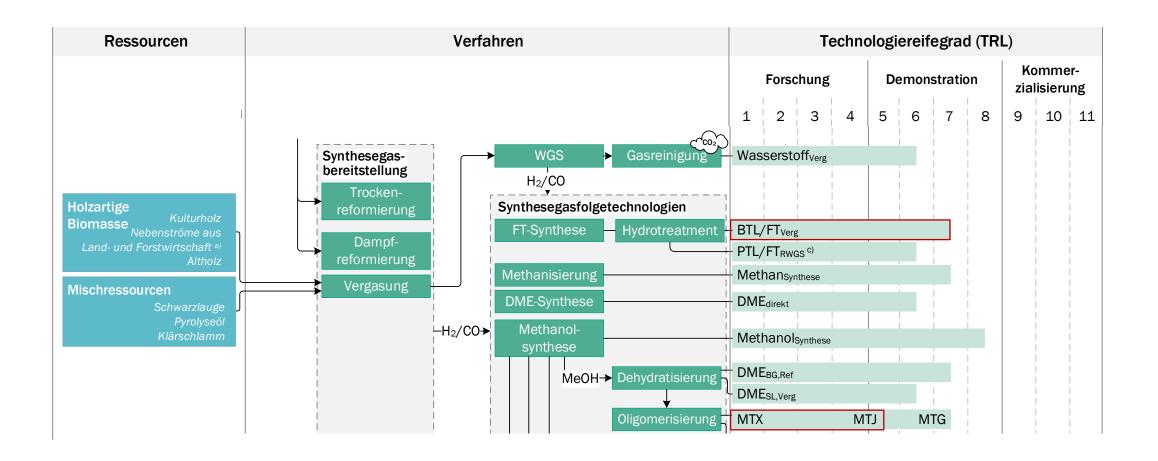
Lignocellulosehaltige Biomasse und Mischressourcen

Öl- und fetthaltige Biomasse

Technologien


Alkohol-Pfad

Technologien HEFA-Pfad

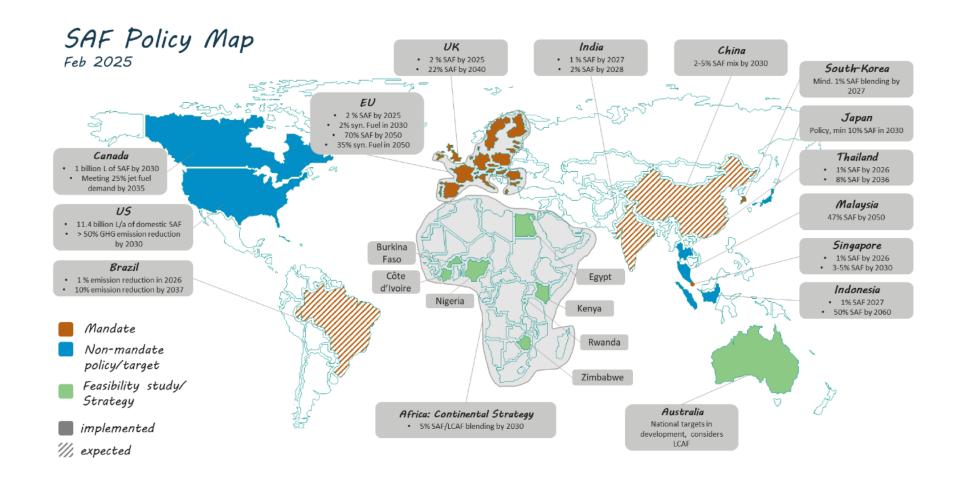


Technologien

Synthesepfad aus Biomasse

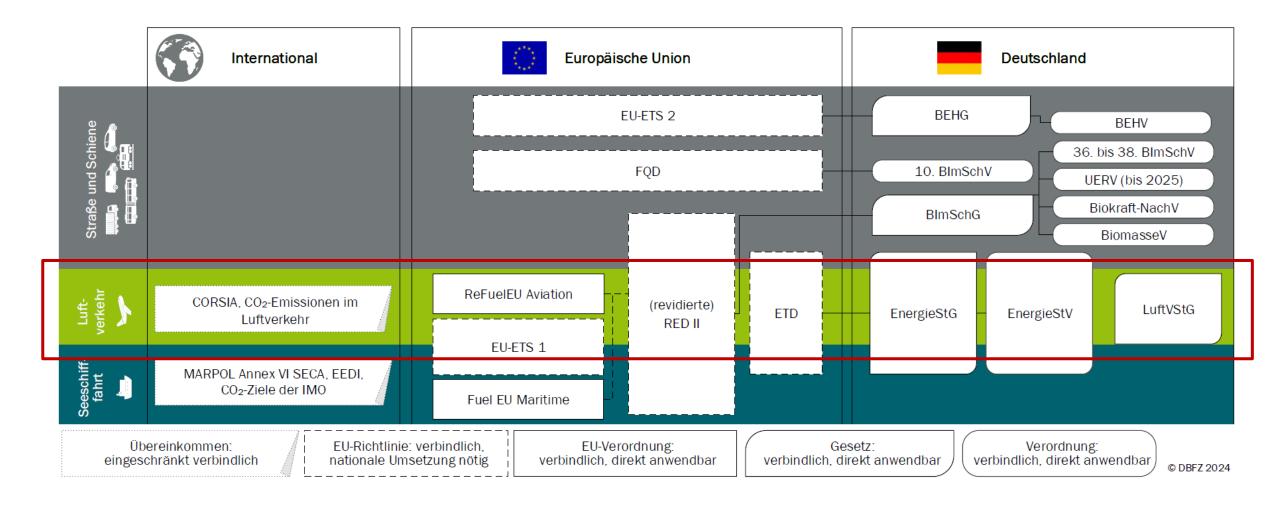
Technologien

Ausgewählte Stakeholder



Stakeholder	Standort	Biokraftstoff-Output (Stand 2024)		
Gevo, Inc.	Silsbee (USA) Lake Preston (USA)	290 t/a ATJ-SPK (Demonstrationsanlage) ab 2026 geplant: 187.000 t/a ATJ-SPK		
LanzaJet	Soperton (USA)	25.890 t/a ATJ-SPK		
Neste Oyj	Porvoo (Finnland) Singapur Rotterdam (Niederlande)	100.000 t/a HEFA-SPK 1 Mio. t/a HEFA-SPK 1,2 Mio. t/a HEFA-SPK (in Bau)		
World Energy	Paramount (USA)	HEFA-Diesel, SAF und Benzin		
Total Energies	La Mède (Frankreich)	500.000 t/a HEFA-Diesel, SAF und AdBlue		
Galp Energia	Sines-Raffinerie (Portugal)	240.000 t/a Diesel oder 180.000 t/a SPK		
Velocys, Inc.	Immingham (Großbritannien) Natchez (USA)	FT-SPK (Demonstrationsmaßstab, in Bau) FT-SPK (Demonstrationsmaßstab, in Bau)		
Euglana Co.	Yokohama (Japan)	CHJ		

Regulatorische Rahmenbedingungen


Überblick über SAF-Mandate

Regulatorische Rahmenbedingungen Überblick

Regulatorische Rahmenbedingungen EU

ReFuelEU Aviation

Ziele

- Erhöhung der Produktion und Nutzung nachhaltiger Kraftstoffe durch Flugzeuge
- Verringerung des ökologischen Fußabdrucks

Geltungsbereich

- EU-Flughäfen^a
- Flugzeugbetreiber^b müssen mind. 90 % ihres jährlichen Treibstoffbedarfs innerhalb der EU tanken
- Betankung mit der für den jeweiligen Flug benötigten Menge
- Verordnung ab 2024 verbindlich
- EU-weites Eco-Label für den Vergleich der Nachhaltigkeit von Flügen ab 2025 geplant
- Evaluation aller 4 Jahre ab 2027 von der EC

Funktionsweise

Festlegung von Mindest-Beimischungsquoten:

Ab	2025	2030	2032	2035	2040	2045	2050
SAF	2 %	6 %	6 %	20 %	34 %	42 %	70 %
RFNBO	0 %	0,7 %	1,2 % bzw. 2 %	5 %	10 %	15 %	35 %

Definition von Bio-SAF

- Biokraftstoffe mit THG-Einsparung von 50 %, 60 %, 65 %^c
 - Kerosin aus biogenen Rest- und Abfallstoffen (RED II Anhang IX Teile A und B)
- Andere Biokraftstoffe, die nicht auf Nahrungs- und Futtermittelpflanzen basieren (maximal 3 %)

Regulatorische Rahmenbedingungen international

CORSIA

Ziele

- CO₂-neutrales Wachstum des internationalen Luftverkehrs ab 2019, u. a. durch die Anwendung nachhaltiger alternativer Treibstoffe
- Flugverkehr mit Netto-Null-Emissionen im Jahr 2050

Geltungsbereich

- Internationale Flüge zwischen Ländern im Europäischen Wirtschaftsraum (EWR) und CORSIAteilnehmenden Drittstaaten
- Ab 2027 nur noch Ausnahmen für bestimmte Entwicklungsländer
- Luftfahrzeugbetreiber mit mehr als 10.000 t CO₂-Emissionen, die mit Flugzeugen mit mehr als 5,7 t Höchstabfluggewicht absolviert werden

Funktionsweise

- Globales, marktbasiertes Programm der ICAO
- Jährliche Meldung von CO₂-Emissionen durch Fluggesellschaften
- Kompensation von wachstumsbedingten CO₂-Emissionen^a durch den Erwerb von Offset-Zertifikaten >> Verringerung der Kompensationsverpflichtung durch Verwendung von CORSIA-Kraftstoffen

Evaluation zu 2026

- Evaluation des CORSIA-Programms bzgl. Erreichung der THG-Einsparungsziele durch die EC
- Danach ggf. anstelle von CORSIA Ausweitung von EU-ETS^b auf Flüge zwischen EU und Drittländern^b
- Ab 2027 Überprüfung im Abstand von drei Jahren

Regulatorische Rahmenbedingungen

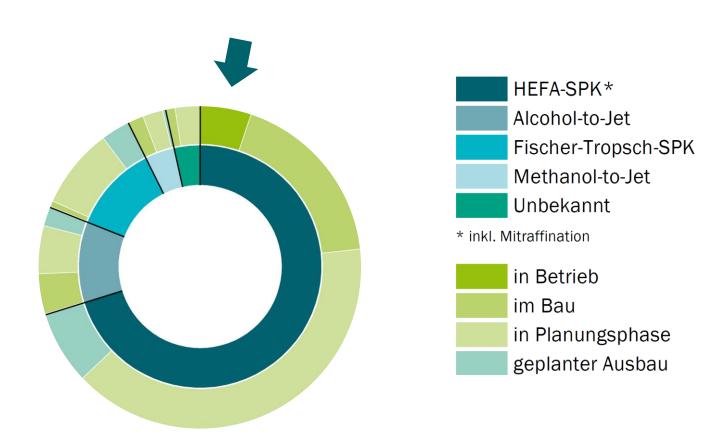
Weitere Regularien

Erneuerbare-Energien-Richtlinie RED II

- Einbeziehung des Flugverkehrs seit 2023
- Zuordnung von Ressourcen in Abhängigkeit von der Nutzung im Flugverkehr
- Festlegung von Mehrfachanrechnungen für bestimmte Anwendungen, z. B. Faktor 1,2 für fortschrittliche Biokraftstoffe im Flugverkehr

Europäischer Emissionshandel EU-ETS 1

- Jährlich sinkende Menge an erlaubten Zertifikaten im Flugverkehr seit 2012
- Ankauf von bzw. Handel mit Emissionszertifikaten für nationale und internationale Flüge im EWR, aus dem EWR nach UK und in die Schweiz sowie seit 2024 für Flüge von und zu EU-Regionen in äußerster Randlage
- Ab 2026 keine kostenlose Zuteilung von Zertifikaten mehr, ab 2025 Überwachung/Berichterstattung von Nicht-CO₂Effekten


Regularien, die auf Freiwilligkeit beruhen

Brasilien: RenovaBio | Kalifornien: LCFS | USA: IRA

Marktausblick

DBFZ

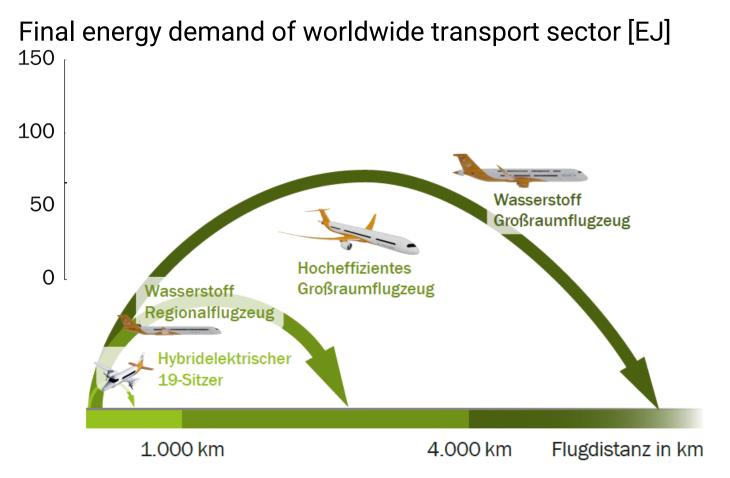
Weltweite Kapazitäten für erneuerbares Kerosin

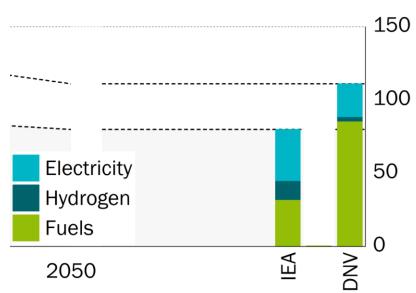
Geplanter Ausbau bis 2030: 32,1 Mio. t/a HEFA-SPK, ATJ, FT-SPK, MTJ

Status quo: 4 1,8 Mio. t/a Zumeist HEFA-SPK, etwas ATJ und CP-HEFA

TOP SAF User im Jahr 2024:

IAG International Airlines Group: 162 kt


Air France & KLM: 103 kt


DHL: 74 kt

Ausblick

Szenarien für den globalen Endenergiebedarf

Fuel demand

	2050
Aviation	14 – 22 EJ

Calculation; 1 Mtoe = 41,87 PJ = 11,63 TWh

Source: Schröder, J.; Görsch, K.; Lenz, C. N. (2025): Herausforderung Energiewende im Verkehr. In: Schröder, J.; Görsch, K. (Hrsg.) (2025): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 4-21. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27 und Eigene Abbildung nach [Batteiger V., Penke C. (2025): Impuls | Energiewende in der Luftfahrt – Technische Herausforderungen. In: Schröder, J.; Görsch, K. (Hrsg.): Erneuerbare Energien im Verkehr. Monitoringbericht. S. 17-18. Leipzig: DBFZ. ISBN: 978-3-949807-23-7. DOI: 10.48480/w11j-9w27]

Fazit

Klimaschutz im Flugverkehr

- Neben technischen und operationellen Verbesserungen sind erneuerbare Kraftstoffe entscheidend, um die Klimaziele im Luftverkehr zu erreichen.
- Für ihre Bereitstellung benötigt es:
 - den Hochlauf fortschrittlicher Biokraftstoffe,
 - den Aufbau von Produktionskapazitäten für bio- und strombasierte Kraftstoffe,
 - die Erhöhung der Beimischungsgrenzen über 50 % hinaus sowie
 - die Ausweitung der Zulassung auf weitere Technologiepfade.
- Einbeziehung von Nicht-CO₂-Effekten in die Klimaschutzbewertung notwendig

Dr.-Ing. Kati Görsch +49 (0)341 2434-329

kati.goersch@dbfz.de

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig www.dbfz.de

CO₂ als Rohstoff

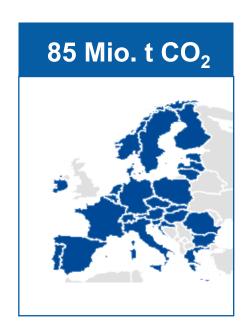
Dr. Janine Heck (CENA Hessen, Teil der Hessen Trade & Invest GmbH)

Prof. Dr. Anne Lange (Frankfurt University of Applied Sciences)

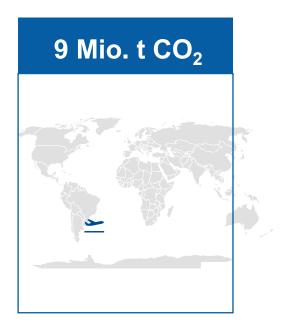
Das Projektkonsortium: Partner & assoziierte Partner

Schema der CO₂-Supply-Chain-Betrachtung

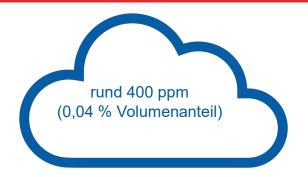
Gefördert durch:



70% SAF-Quote 2050, davon die Hälfte PtL


ReFuelEU-Aviation (Verordnung 2023/2405)

CO₂-Mengen zur Erfüllung PtL-Quote 2050



• Annahmen: 3,4 t CO₂ pro t PtL; Kerosinverbrauch 2024 wieder auf dem Niveau von 2019 und dann ein jährliches Wachstum von 1,5%

Welche CO₂-Quellen gibt es?

Atmosphäre diffus, global verfügbar

Direct Air Capture

- TRL 7
- 450 1.500 €/t CO₂
- 200 1.000 €/t CO₂ (Prognose f
 ür Deutschland 2045)

Industrielle Punktquellen stationär, lokal

CO ₂ -Quelle	CO ₂ -Konzentration (Volumenanteil)
Abfallverbrennung	Rund 9 – 11 %
Zementanlage	Rund 14 – 33 %
Biomassekraftwerk	Rund 10 – 12 %

Aminwäsche

- TRL 8-9
- Z.B. Zementindustrie: 70 120 €/t

Quellen:

Bisotti et al, Direct Air Capture (DAC) deployment: A review of the in industrial deployment, Chemical Engineering Science, 2024, https://doi.org/10.1016/j.ces.2023.119416
Wenzel et al, Weather conditions severely impact optimal direct air capture siting, Advances in Applied Energy, 2025, https://doi.org/10.1016/j.adapen.2025.100229
VDI-Richtlinie 4635 Entwurf, Power-to-X CO2-Bereitstellung, 2024

Vahlenkamp et al, CO2-Abscheidung und Speicherung – was sie bringt und was sie kostet, Energiewirtschaftliche Tagesfragen, 2024

Informationen zu CO₂-Punktquellen

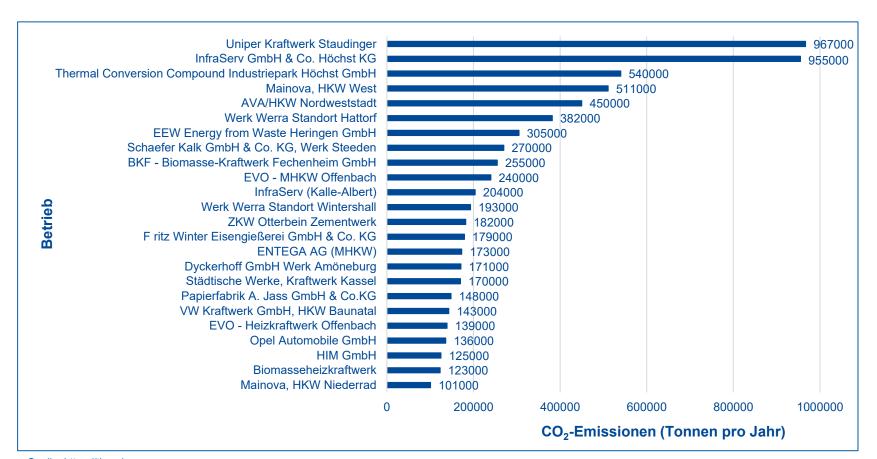
Deutsche Emissionshandelsstelle (DEHSt):

https://www.dehst.de

Bestands- und Emissionsdaten des Hessischen Landesamts für Naturschutz, Umwelt und Geologie (HLNUG):

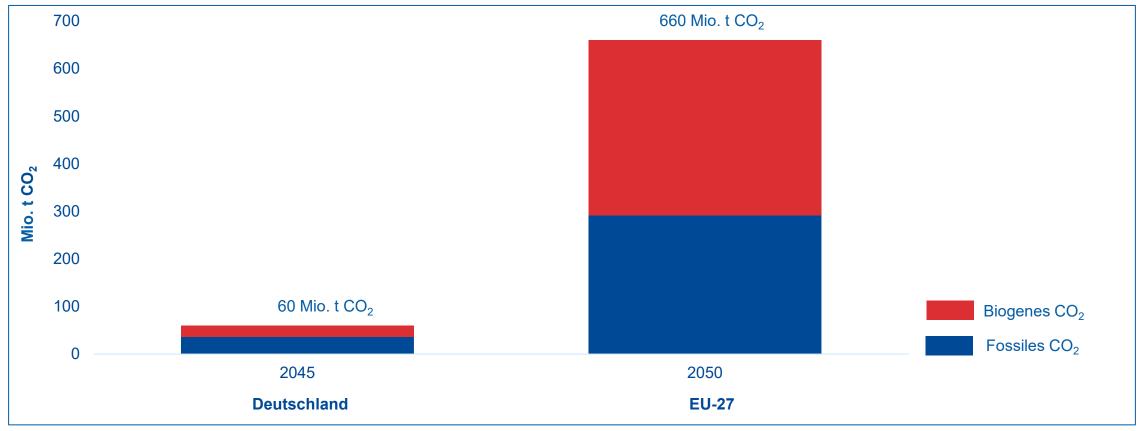
https://emissionskataster.hlnug.de

Zentrales deutsches Portal für transparente und frei zugängliche Emissions- und Abfalldaten THRU:


https://thru.de

CO₂-Punktquellen in Hessen größer 100.000 Tonnen

(2023)


- 24 Betriebsstätten
- 7,06 Millionen Tonnen
- ca. 2/3 der Emissionen

Quelle: https://thru.de

03.11.2025

Zukünftiges Potenzial für CO₂ aus Punktquellen

Quellen:

Chemistry4Climate, Abschlussbericht, Wie die Transformation der Chemie gelingt, 2023 CO2 Point Source Potential in Europe: A Frontier Economics analysis for eFuel Alliance & eNG Coalition, 2025

Regulatorische Rahmenbedingungen

EU-Ebene

Deutschland

Gesetze, Verordnungen, Richtlinien

- Europäisches Klimagesetz (Verordnung 2021/119)
- EU-Klimaschutzverordnung/ Lastenteilungsverordnung (2018/842)
- Emissionshandels-Richtlinie (2003/87/EG)
 - Konkretisiert durch u.a. Zuteilungsverordnung (2019/331), CBAM-Verordnung (2023/956), Monitoring-Verordnung (2018/2066) und weitere
- Net-Zero Industry Act (2024/1735)
- ReFuelEU-Aviation (Verordnung 2023/2405)
- RED II & III und delegierte Verordnungen und Richtlinien, v.a. 2023/1185
- CCS-Richtlinie (2009/31/EG)
- Industrieemissionsrichtlinie (2010/75/EU)

• Bundes-Klimaschutzgesetz

- Treibhausgas-Emissionshandelsgesetz (TEHG)
- Brennstoffemissionshandelsgesetz (BEHG)
- Kohlenstoffdioxid-Speicherungsgesetz (KSpG)
- Bundesimmissionsschutzgesetz und Verordnungen (BImSchG & BImSchV)

Strategien

- Green Deal (C/2019/640)
- Nachhaltige Kohlenstoffkreisläufe (C/2021/800)
- Europas Klimaziel für 2040 (C/2024/63)
- Industrial Carbon Management Strategie (C/2024/62)
- Clean Industrial Deal (C/2025/85)
- EU global climate and energy vision (JOIN/2025/25 final)

- Carbon Management-Strategie (bzw. Eckpunkte aus 2024)
- Langfriststrategie Negativemissionen (bzw. Eckpunkt aus 2024)

Logistik

Der Fokus

- Gestaltung von alternativen Transportmöglichkeiten des CO2 von hessischen Punktquellen an mögliche PtL Produktionsstandorte
 - Straße
 - Pipeline
 - o Schiene
- Abschätzung von Kosten und Emissionen
- Analyse der Struktur der resultierenden Netzwerke
- Relevanz der Verfügbarkeit einzelner Modi
- Daten für weitere Projektschritte bereitstellen

Unser Ansatz

- Realitätsnahe Annahmen zu Rahmenbedingungen im Transport
- Plausible Annahmen über mögliche Strecken einer Pipeline
- Offener Ansatz f
 ür viele Vielzahl von Szenarien
- Implementierung als Optimierungsmodell

Transportnetzwerke werden im Kontext CCS/CCU derzeit noch wenig betrachtet

- Die vorliegenden wissenschaftlichen Beiträge fokussieren häufig nur auf ein Transportmittel
- Die typische Fragestellung im Bereich der Pipeline ist eine Infrastrukturentscheidung
- Exisierende Modellformulierungen für H₂ sind übertragbar
- Modelle nutzen ein breites Spektrum an Annahmen

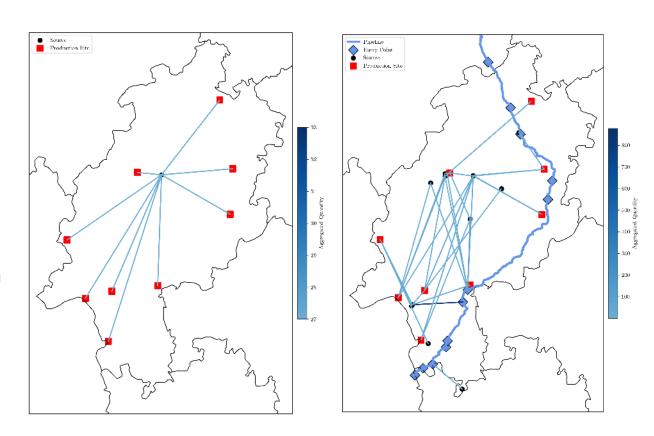
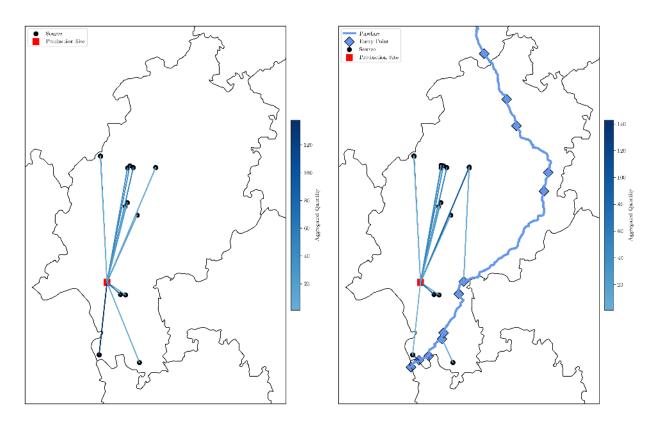

Reference	Source	Storage	Transport	CO_2	H_2	Pipeline	Truck
Knoope et al. (2014); Yeates et al. (2024); Solomon et al. (2024b)			√	√		√	
Myers et al. (2024)			√	√			√
Mendelevitch et al. (2010); Gunawan et al. (2024); Bogs et al. (2025); Morbee et al. (2012); Oei et al. (2014); Middleton and Bielicki (2009)	√	√	√	√		√	
Karlsson et al. (2023, 2024)	√	√	√	√			√
André et al. (2013); Yang and Ogden (2007)		√	√		√	√	
Lahnaoui et al. (2021, 2019); Parolin et al. (2022); Almansoori and Shah (2006)	✓	√	√		√		√
Solomon et al. (2024a)	√		√		√	√	√
Becattini et al. (2022); Gabrielli et al. (2022); Da Silva et al. (2018)	✓	√	√	√		√	√

Table 1: Reviewed papers grouped by category

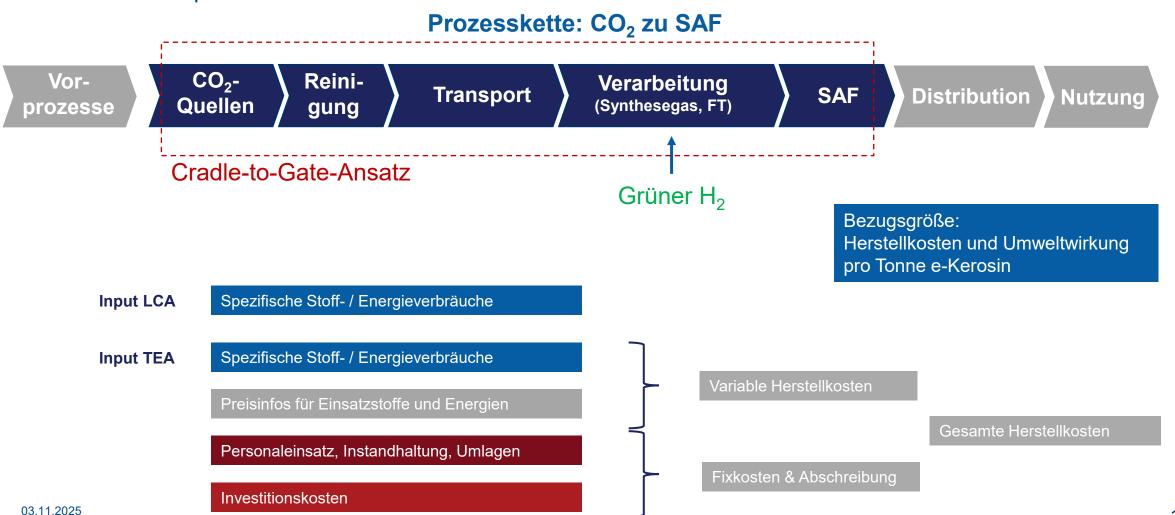
Logistik


- Bei mehreren Produktionsstandorten und großen Punktquellen wird der Standort von einer, kostengünstig gelegenen, Punktquelle bedient
- Emissionen, die über den Bedarf der Produktionsstätte hinausgehen, werden gegen Kosten emittiert
- Mit Einführung einer Pipeline werden Emissionskosten um über 90% reduziert
- Die emittierten Emissionen sinken in diesem Szenario um etwa die Hälfte
- Die Gesamtkosten inklusive Emissionskosten sinken um 88%

Logistik

- Bei einem Produktionsstandort ohne Pipeline wird nur so viel CO₂ abgeholt, wie von der Produktion verarbeitet werden kann
- Bei Berücksichtigung der Pipeline wird insgesamt mehr CO₂ abgeholt und unter anderem in die Pipeline eingespeist
- Dadurch sinken die Kosten für die Emission von CO₂ um 99%
- Für die Abholung von mehr CO2 werden auch mehr Fahrer und LKW benötigt, jedoch sinken die Gesamtkosten um 59%

Reinigungskonzept & PtL-Standortqualifizierung


Foto: INERATEC

03.11.2025

Bewertung der Wertschöpfungskette

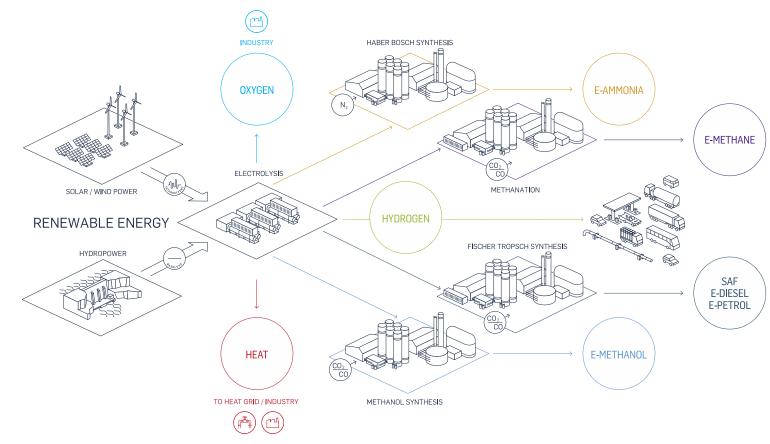
Ansatz und Scope für TEA und LCA

Vielen Dank für Ihre Aufmerksamkeit

PRODUKTION UND LOGISTIK VON WASSERSTOFF UND EFUELS

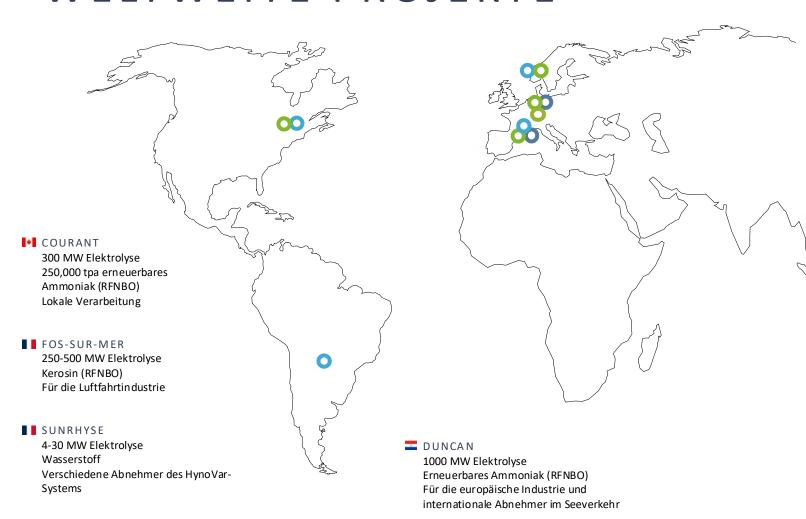
KONFERENZ NACHHALTIGER LUFTVERKEHR, 03.11.2025

HY2GEN


PRODUKT PORTFOLIO — FOKUS AUF D-A-CH

HAUPT PROUKTE:

- Wasserstoff (H₂)
- Ammoniak (NH₃)
- Methanol (CH₃OH)
- Kerosin (C₁₂H₂₆-C₁₅H₃₂)
- Methan (CH₄)


BY-PRODUCTS:

- Wärme
- Sauerstoff
- Biofuels
- Naphtha
- Gasoline
- Diesel

ÜBER HY2GEN

WELTWEITE PROJEKTE

IV ERSO N

255 MW Elektrolyse 200,000 tpa erneuerbares Ammoniak (RFNBO) Einzelner großer Abnehmer

CONSEIL I

2 MW Elektrolyse 300 tpa erneuerbarer Wasserstoff (RFNBO) Mehrere industrielle Abnehmer

ATLANTIS I/II (IN BETRIEB)

6 (+2) MW Elektrolyse
900 tpa erneuerbarer Wasserstoff (RFNBO)
4,000 tpa erneuerbares Methan (RFNBO)
Einzelner großer Abnehmer

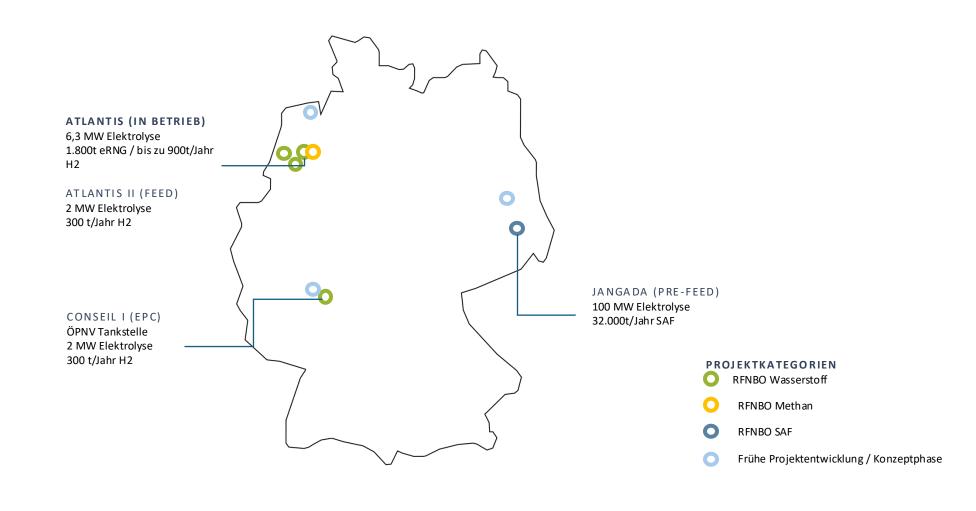
JA NGA DA

100 MW Elektrolyse 28000 tpa erneuerbares Kerosin / SAF (RFNBO) Luftfahrt

NAUTILUS PROJEKTE

100 MW Elektrolyse
Je 8.000 tpa erneuerbarer Wasserstoff (RFNBO)
Einzelner industrieller Abnehmer via Backbone

HAUPT PRODUKTE


Grüner Wassersto

Ammon

MeOH/SAF

Die Symbole auf der Karte zeigen unsere Projektpipeline (Tier-I- und Tier-II-Projek Nur Tier-I-Projekte sind mit Standort, Kapazität und Produkten angegeben.


PROJEKTE IN DEUTSCHLAND

BETRIEB IN DEUTSCHLAND

ATLANTIS EFUEL WERK

- Das ATLANTIS Werk ist die weltweit größte in Betrieb befindliche Anlage zur Herstellung von synthetischem Methan und erneuerbarem Wasserstoff
- Der Standort ist bereits seit 11 Jahren in Betrieb und offiziell die erste deutsche Anlage, die die RFNBO Zertifizierung für beide Produkte erlangte, sowie die zweite weltweit

Elektrolysehalle

Aminwäsche (nach Biogas-Anlage)

Methanisierung (Sabatier-Reaktion)

Wasserstoff Trailer-Abfüllung

Einspeisung in das Erdgasnetz

Versorgung Fischer-Tropsch SAF-Anlage (Atmosfair)

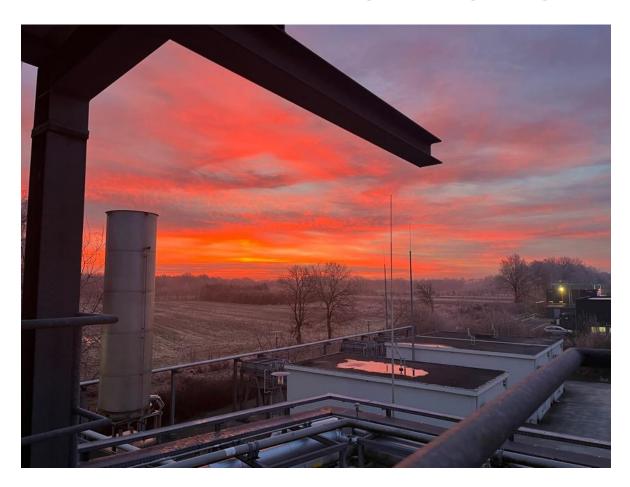
DIE BESTE NACHRICHT

- Atmosphärische ("drucklose") Alkali-Elektrolyseure mit Kaliumlauge (KOH) Elektrolyt
- Drei Produktionseinheiten mit je 1.300
 Nm³/h bei 2 MW Anschlussleistung pro Elektrolyseur
- Stromstärke von 9.600 A,
 Betriebstemperatur bei 75°C
- Seit 2013 in Betrieb und bei ca. 58 kWh / kg H2 - nach 12 Jahren (!)

DIE CO2 QUELLE: AMINWÄSCHE

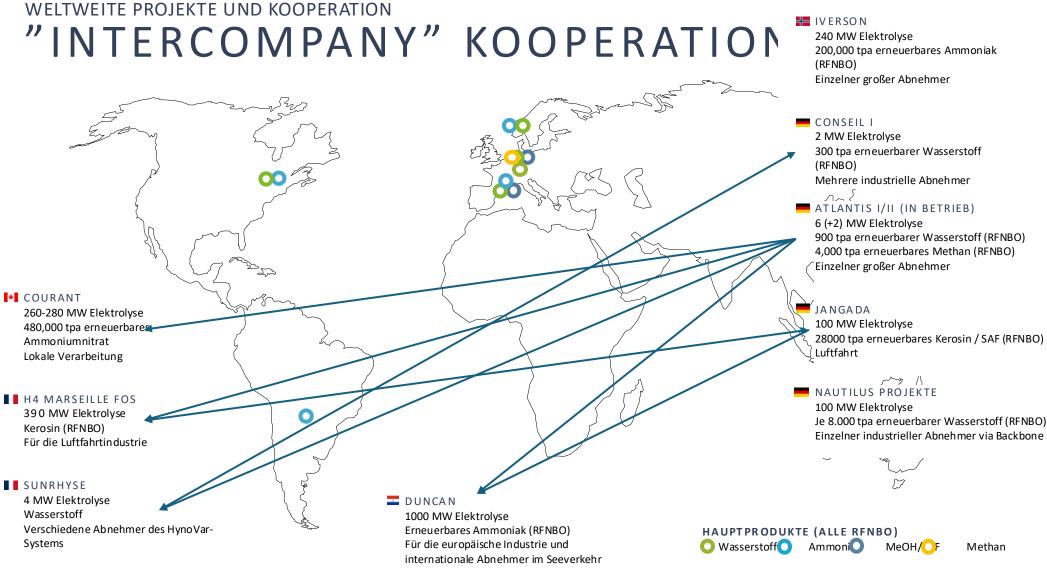
- Verfahren: Aminwäsche
- Leistung: 1.000 Nm³/h Biogas (35% v. CO2)
- Wärmebedarf: 450-600 kW bei 170°C aus Methanisierung
- Betriebsbeginn: Sommer 2013
- Verbleibendes Methan (nach Abtrennung von CO2) aus Biogas wird separat in das regionale Gasnetz eingespeist

DAS "HERZSTÜCK": DIE METHANISIERUNG


- Chemische Reaktion: Sabatier-Reaktion
- Reaktortyp: Rohr & Mantel
- Prozess: katalytische Methanisierung Kapazität: 1.300 Nm³/h Wasserstoff
- Leistung: 350 Nm³/h e-RNG
- Produktqualität: 94% CH4 (Methan),
 3% Wasserstoff, 3% CO2
- Kühlsystem: molten salt
- Wärmerückgewinnung: max. 600 kW bei 170°C

DAS "HERZSTÜCK": DIE METHANISIERUNG

- Größte in Betrieb befindliche Methanisierung weltweit
- Ursprünglicher Scale-Up Faktor von Demonstrationsanlage: 330 (!!!)
- Realbetrieb zeigte sowohl die Robustheit des Designs, als auch hohe Flexibilität in der Fahrweise des Reaktors
- Besuchergruppen aus aller Welt sind mehrfach im Monat zu Gast in Werlte



WELTWEITE PROJEKTE UND KOOPERATION

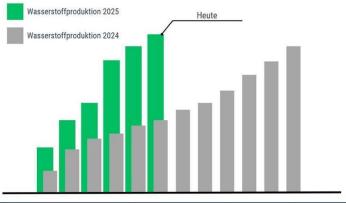
PARTNER & BESUCHERGRUPPEN 2025

Die Symbole auf der Karte zeigen unsere Projektpipeline (Tier-I- und Tier-II-Projekte) Nur Tier-I-Projekte und Projekte in Betrieb sind mit Kapazität und Produkten angegeben

BETRIEB IN DEUTSCHLAND

ÜBER UNSEREN STANDORT

- Unsere volle Produktionskapazität am Standort ist kommerziell verkauft – wir sind ein Beispiel für einen wirtschaftlich arbeitenden eFuel-Standort
- ATLANTIS ist für die Erstbefüllung von Wasserstoff-Trailern zugelassen und sorgt damit für das Inverkehrbringen einer Logistik-Infrastruktur
- Wir speisen synthetisches Methan in das Erdgasnetz ein und ermöglichen so eine Dekarbonisierung bei Beibehalt bestehender Infrastruktur
- Der verwendete Grünstrom kommt (per RFNBO tauglichem Herkunftsnachweis) aus einem süddeutschen Wasserkraft-Kraftwerk
- Wir können mit 90% der Methanisierungs-Abwärme für den Bedarf unserer örtlichen Aminwäsche nutzen


- Unsere Alkali-Elektrolyseure sind im 11. Betriebsjahr und absolvierten eine erfolgreiche 10 Jahresprüfung
- Die Methanisierung arbeitet noch immer mit der ersten Reaktorfüllung
- Ein Großteil des benötigten CO2 wird am Standort bereitgestellt (Aminwäsche, Biogas)
- Wir produzieren RFNBO Wasserstoff in Brennstoffzellen Qualität (99,999% Reinheit)
- Wir betanken auf 200 / 300 / 380 bar Druckniveau und sind damit für alle gängigen Druckniveaus Lieferfähig
- Wir haben eine 24/7 Betriebsgenehmigung und produzieren bei Strompreisen innerhalb unseres Toleranzbandes kontinuierlich

BETRIEB IN DEUTSCHLAND

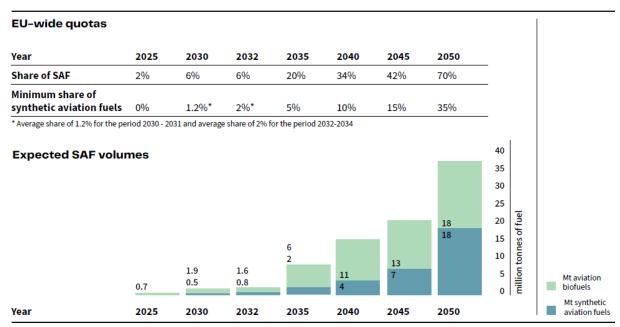
BEDEUTUNG FÜR DIE GRUPPE

- Langjährige Betriebserfahrung und Anlagendaten (tiefgehende Analytik basierend auf >1000 Sensoren)
- Vergleich verschiedener Technologien (Alkali vs. PEM, Druck-Alkali vs. Atmosphärisch)

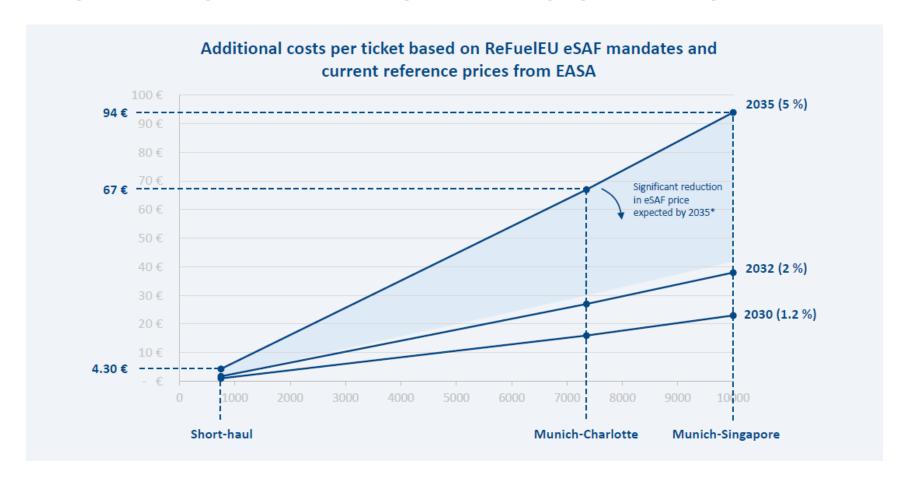
⊗ HY2GEN

Jetzt schon mehr erneuerbarer Wasserstoff als 2024! Hy2gens Anlage ATLANTIS übertrifft gesamte Produktionsmenge von letzem Jahr

- Internationale Marktchancen
- Internationale "High-Performer" gewinnen
- Entwicklung von "Blueprints"



REFUEL EU AVIATION REGULATION


- Die durch die Regulierung im Oktober 2023 eingeführten und ab Januar 2025 eingeführten Quoten leiten die Marktentwicklung
- Ab 2030 hat die Regulierung eine Eingangsquote von 1,2% für eSAF vorgegeben (RFNBO & non-fossil low carbon synthetic aviation fuel)
- In Deutschland werden zwischen 8 und 10 Millionen Tonnen Kerosin verbraucht
- Das entspricht einem eSAF-Bedarf von 96 120.000t eSAF in 2030 – nur in Deutschland

Source: Eurostat Database (2023); growth assumption aviation market 1.5% per annum (according to the International Civil Aviation Organization, ICAO, medium scenario)

^{*} Source: https://www.atmosfair.de/en/

REFUEL EU AVIATION REGULATION

Mehrkosten auf den Ticketpreis halten sich während der Ramp-up Phase des Marktes in

* Quelle Bild: Einführungsvortrag aireg 2025

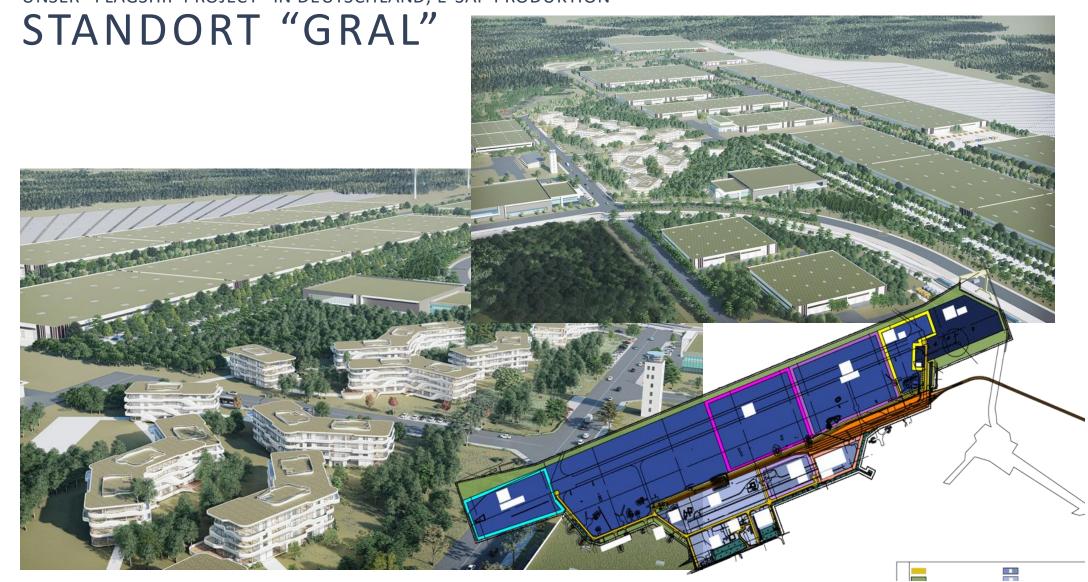
Grenzen

ESAF

REFUEL EU AVIATION REGULATION

Mehrkosten auf den Ticketpreis sind während der Ramp-up Phase des Marktes

* Quelle Bild: Einführungsvortrag aireg 2025


überschaubar

UNSER "FLAGSHIP PROJECT" IN DEUTSCHLAND, E-SAF-PRODUKTION

PROJECT "JANGADA"

UNSER "FLAGSHIP PROJECT" IN DEUTSCHLAND, E-SAF-PRODUKTION

PROJEKTENTWICKLUNG: JANGADA, E-SAF-PRODUKTION

PROJEKT STATUS - STARTKLAR

TECHNOLOGIE

"Whitebooks" Und Vorverträge mit dem entsprechenden Technologiepartner MtJ-Process verfügbar

WASSER

Wasserversorgung gesichert

NETZ

Stromanschluss 30 kV bereit im Jahr 2026, verbindliche Grundsatzvereinbarung mit Enertrag

STROM

H2-Backbone voraussichtlich zwischen 2030 und 2032

LOI für PPA und Versorgungskonzept erarbeitet

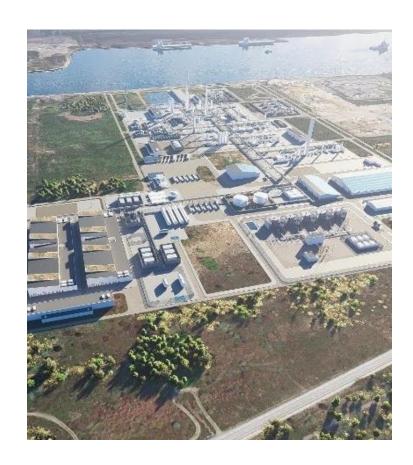
FLÄCHE

Optionsvereinbarung mit EUROMOVEMENT über einen künftigen Kaufvertrag (bereits ausgearbeitet)

GENEHMIGUNGEN

Zulassungsbesprechung mit der staatlichen Umweltbehörde abgeschlossen (09.2023) Scoping-Verfahren mit der staatlichen Umweltbehörde abgeschlossen (01.2024)

BESTEHENDER FÖRDERBEDARF AUFGRUND REGIONALE BENACHTEILIGUNG DEUTSCHLANDS (CO2 Intensität, Stromkosten)



UNSER SCHWESTERPROJEKT: H4 MARSEILLE FOS

GROSSSKALIGE HERSTELLUNG VON E-SAF

Marseille Fos

- 75.000 Tonnen e-SAF pro Jahr (entspricht 35 % des Treibstoffbedarfs des Flughafens Marseille Provence) unter Verwendung des Methanol-to-Jet-Verfahrens
- 100 %ige Deckung des e-SAF-Bedarfs bis 2035 für direkt zugängliche Märkte (Marseille, Nizza, Lyon und Genf)
- Investitionen in Höhe von 1,5 Milliarden Euro
- 390 MW Stromverbrauch
- 300 MW installierte Elektrolysekapazität
- 165 direkte Arbeitsplätze / 100 indirekte Arbeitsplätze
- 240.000 Tonnen CO₂-Einsparungen pro Jahr, was fast 500 vermiedenen Transatlantikrundreisen mit 120.000 Passagieren entspricht

ZUSAMMENFASSUNG

WASSERSTOFF KOMMT UND IST INTERNATIONAL

- EU H2 Backbone ermöglicht realistische Logistik für Wasserstoff
- Es besteht eine hohe Wasserstoff-Kompetenz innerhalb der EU und auch insbesondere in Deutschland. Komplexe Pilotprojekte und industrielle Demonstratoren werden weiter in Ländern mit einer ausgeprägten Infrastruktur entstehen
- Großvolumig werden wir auch auf den Import von Wasserstoff bzw. Derivaten angewiesen sein
- Verfügbare Speiseölreste / Fette und auch Biomasse sind endlich
- Für eine globale Transformation führt langfristig kein Weg an synthetischen Produkten und erneuerbarem Wasserstoff vorbei

- Alleine REDII und REDIII schaffen in Deutschland bzw. der EU einen enormen Bedarf auch an RFNBO Wasserstoff bzw. Derivaten
- ReFuelEU Aviation und ReFuelEU Martitime, sowie in der Zukunft IMO Nachhaltigkeitsanforderungen übersteigen heute bereits ambitionierte Ausbaupläne für Bio- und E-Fuel Werke und werden einen Hochlauf der Technologien ermöglichen

KONZENTRATION AUF REALE MÖGLICHKEITEN UND MÄRKTE UND NICHT AUF MARKTKONSOLIDIERUNG

ZUSAMMENFASSUNG

WÜNSCHE FÜR EINE DEUTSCHE SAF-INDUSTRIE

- In "dekarbonisierten" Stromzonen kann heute schon wettbewerbsfähig SAF hergestellt werden. Wir benötigen einen weiteren Ausbau der erneuerbaren Energien in Deutschland und kurzfristig eine Trennung der Strompreiszonen, um zumindest im Norden Deutschlands wettbewerbsfähige Bedingungen zu erhalten
- "Methanol-to-Jet" ist ein aussichtsreicher Produktionspfad zur Herstellung von synthetischem Flugbenzin. Industrielle Demonstratoren können in Deutschland an diesen Technologiepfad anknüpfen lassen, es ist eine Chance für Wachstum in einer Zukunftsbranche
- Vollständig erneuerbare Produktionspfade für nachhaltiges Flugbenzin brauchen diese Pilotprojekte, um auch in der Zukunft Vertrauen bei Investoren und Betreibern zu finden. Wir brauchen die vorgesehenen Subquoten für RFNBO, um diese Projekte "in den Markt" zu bringen und Erfahrung zu sammeln

- Wir leben in bewegten Zeiten, wir benötigen eine resiliente Gesellschaft und eine resiliente Industrie. Synthetische Kraftstoffe sind nicht nur erneuerbar, sie kommen aus heimischer Herkunft und können somit zu einer gesteigerten Resilienz beitragen. Fördern wir heute Projekte zur Herstellung von erneuerbarem Flugbenzin, erreichen wir beides: industrielle Demonstratoren und Marktperspektiven, sowie resiliente Versorgung.
- Bei allen Herausforderungen der heutigen Zeit dürfen wir nicht den Klimaschutz vernachlässigen. In unserer globalisierten Welt werden wir weiterhin Fliegen und synthetisches Flugbenzin, eSAF als RFNBO ist die emissionsfreie Antwort für die Luftfahrt, besonders mit Blick auf Langstreckenflüge.

SIE HABEN FRAGEN? MELDEN SIE SICH GERNE BEI UNS!

KONTAKT

MATTHIAS LISSON Geschäftsführer

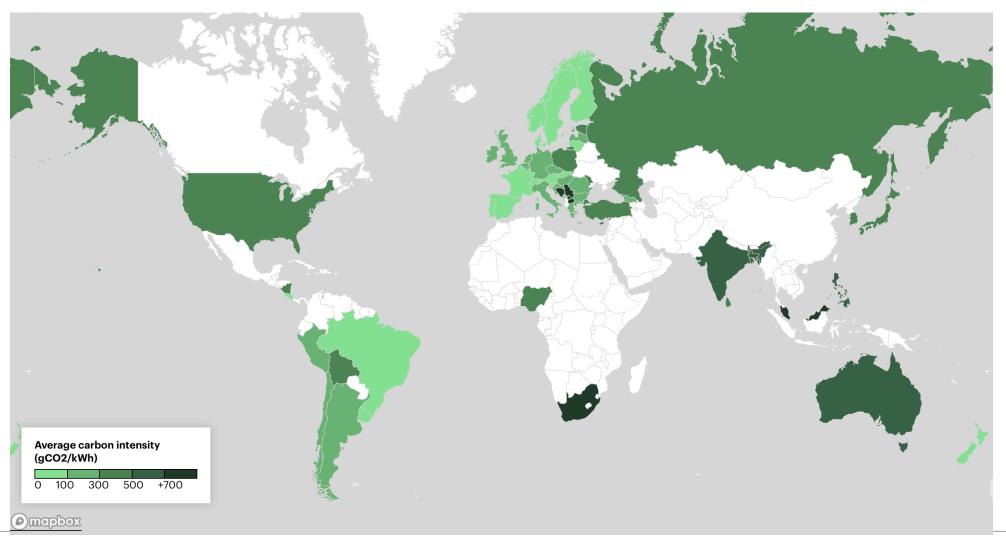
Email: m.lisson@hy2gen.com

HY2GEN Deutschland GmbH

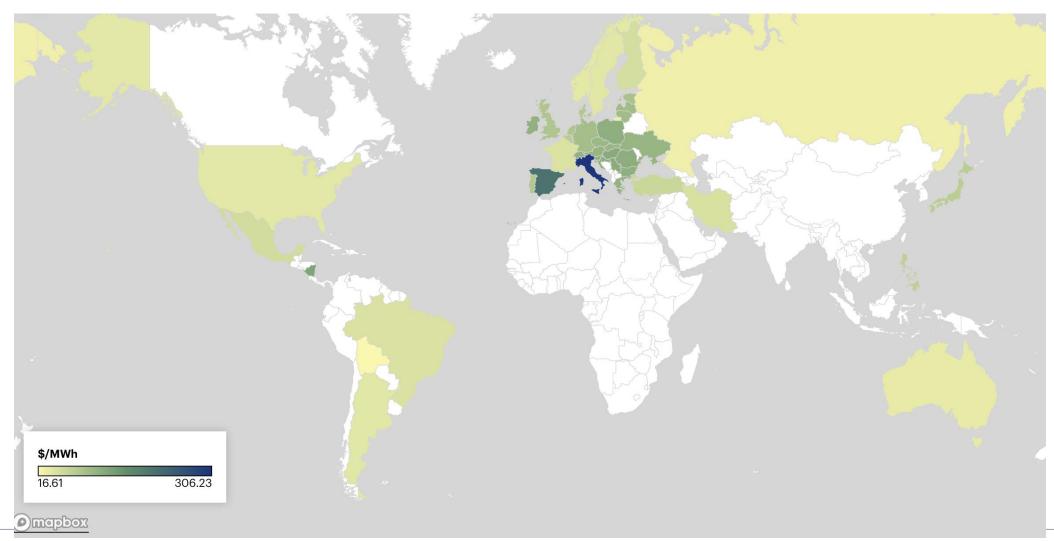
Klingholzstrasse 7 65198 Wiesbaden, Germany

Phone: +49 (0)611 950 171-0 Fax: +49 (0)611 977 741 – 11 Email: info@hy2gen.com **HY2GEN ATLANTIS GmbH**

Loruper Strasse 80 49757 Werlte, Germany


HY2GEN

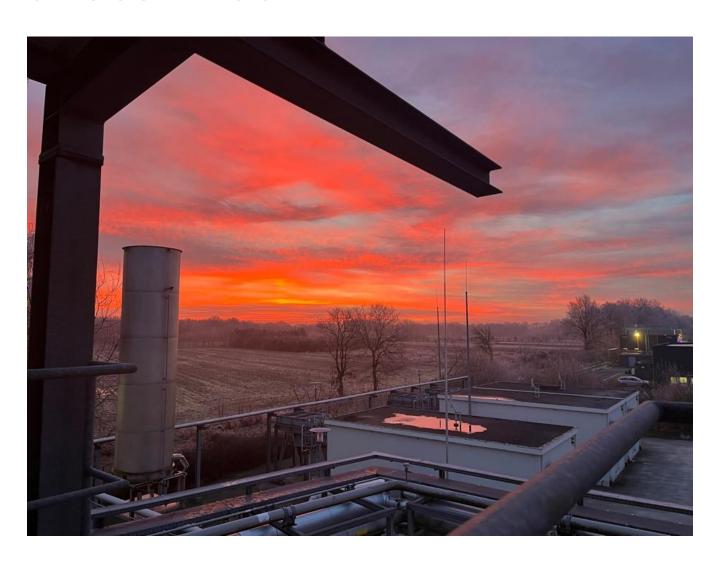
FUELING YOUR TRANSFORMATION


INTERNATIONALER BLICK

CO2 INTENSITÄT VON STROMNETZEN

INTERNATIONALER BLICK

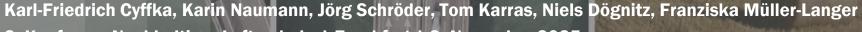
HEUTIGE STROMPREISE

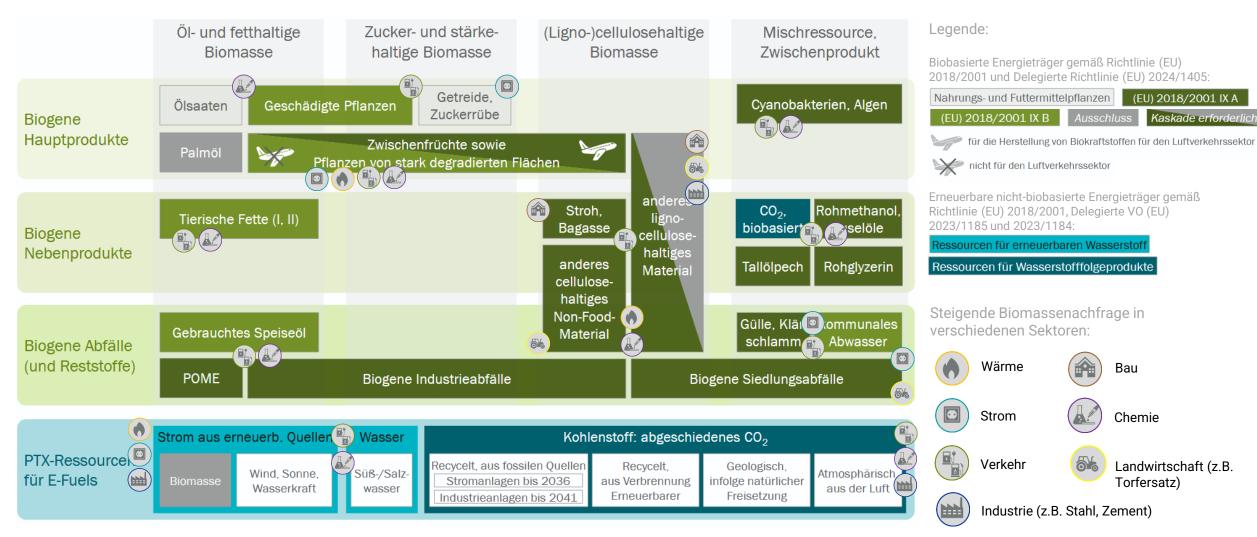

WELTWEITE PROJEKTE UND KOOPERATION

PARTNER & BESUCHERGRUPPEN 2025

GRÜSSE AUS WERLTE

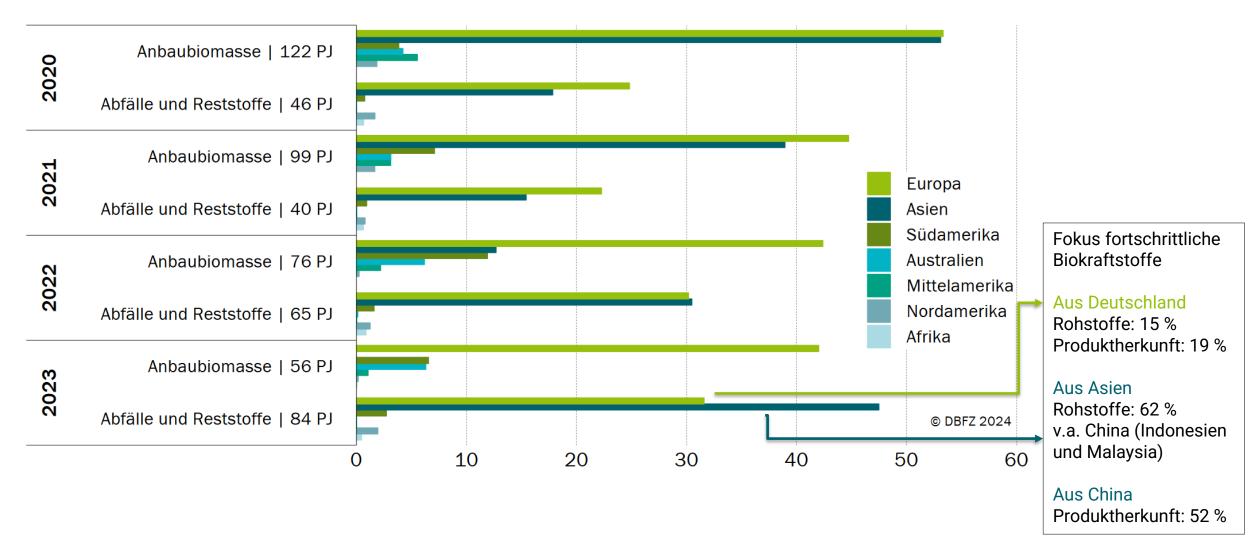
Deutsches Biomasseforschungszentrum



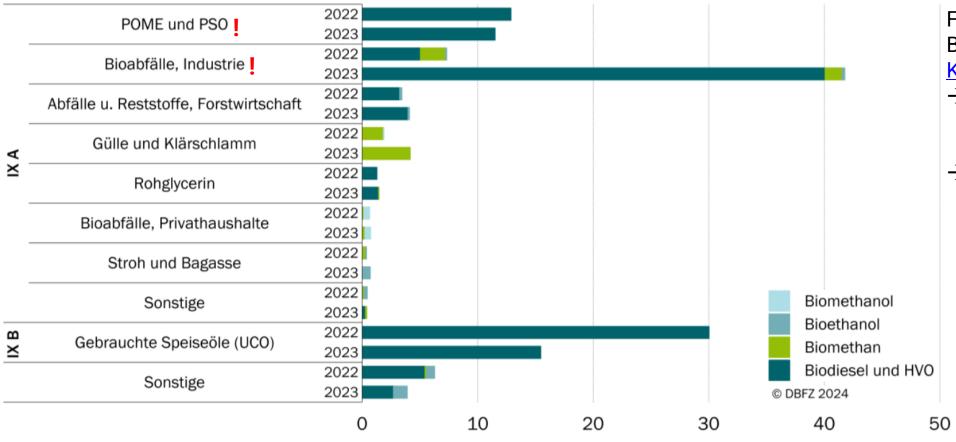

3. Konferenz Nachhaltiger Luftverkehr | Frankfurt | 3. November 2025

Regulatorische Bewertung der Ressourcen zur Produktion erneuerbarer Kraftstoffe & sektorale Bedarfsentwicklung

Ressourcen zur Produktion erneuerbarer Kraftstoffe kategorisiert gemäß rechtlichen Vorgaben



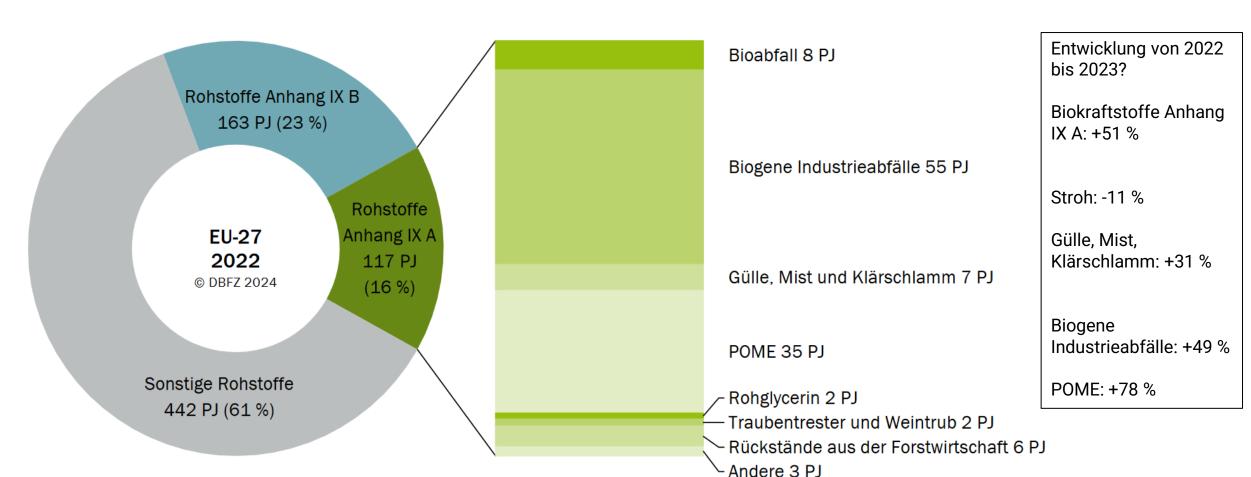
Rohstoffbasis der genutzten Biokraftstoffe DE & EU


Herkunft der Rohstoffbasis – DE 2020-2023 Fortschrittliche, abfallbasierte, sonstige, konventionelle in PJ

Rohstoffbasis genutzter Biokraftstoffe – DE 2022/2023 Fortschrittliche, abfallbasierte, sonstige in PJ

Für Rohstoffe mit hohem Betrugsrisiko (<u>Bewertung EU KOM</u>):

- → Vor-Ort-Kontrollen auf Rohstoff-Ebene notwendig
- → siehe <u>DBFZ-</u>
 <u>Stellungnahme</u> zum
 Entwurf zur Weiterentwicklung der THGQuote:

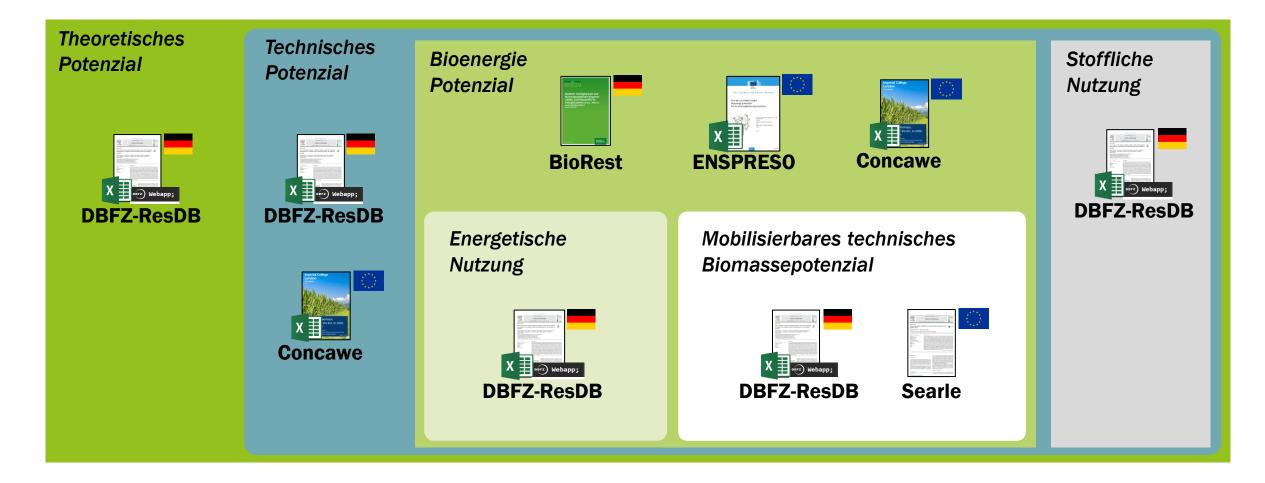

 $Rund\ 90\ \%\ der\ fortschrittlichen\ Biokraftstoffe\ aus\ Industrieabf\"{a}llen\ im\ Jahr\ 2023\ sind\ Biodiesel\ (FAME)\ aus:$

- Abfällen aus der Herstellung, Zubereitung, Vertrieb und Anwendung von Fetten, Schmierstoffen und Seifen;
- Abwasserschlamm aus der Zubereitung und Verarbeitung von Obst, Gemüse und Getreide Inhalt von Fettabscheidern und Flotate aus Betrieben, die tierische Produkte verarbeiten, aber nur pflanzliche Fette/Öle einsetzen;
- Schlämme aus der Zubereitung und Verarbeitung von Speiseöl;
- Abfälle bei der Herstellung, Zubereitung, Vertrieb und Anwendung organischer Grundchemikalien Freie Fettsäuren (FFA), Reststoffen aus der Umesterung;
- Abfallöle, -fette oder -fettsäuren, von spezialisierten Aufbereitungsbetrieben aus Inhalten von Fettabscheidern separiert und vor Verarbeitung rückverestert, nicht Abfallöle, -fette oder fettsäuren aus Kanalisation.

Rohstoffbasis genutzter Biokraftstoffe – EU 2022

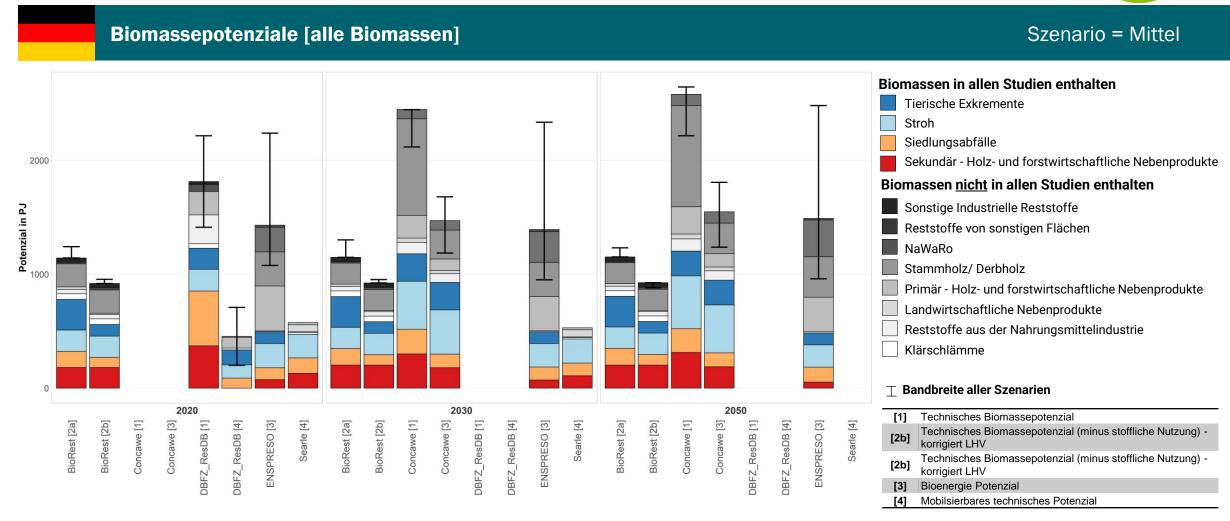
Fortschrittliche, abfallbasierte, sonstige, konventionelle in PJ

Hinweis: Sonstige Rohstoffe bezogen auf konventionelle Biokraftstoffe + sonstige Biokraftstoffe (Nicht-Teil A/B)

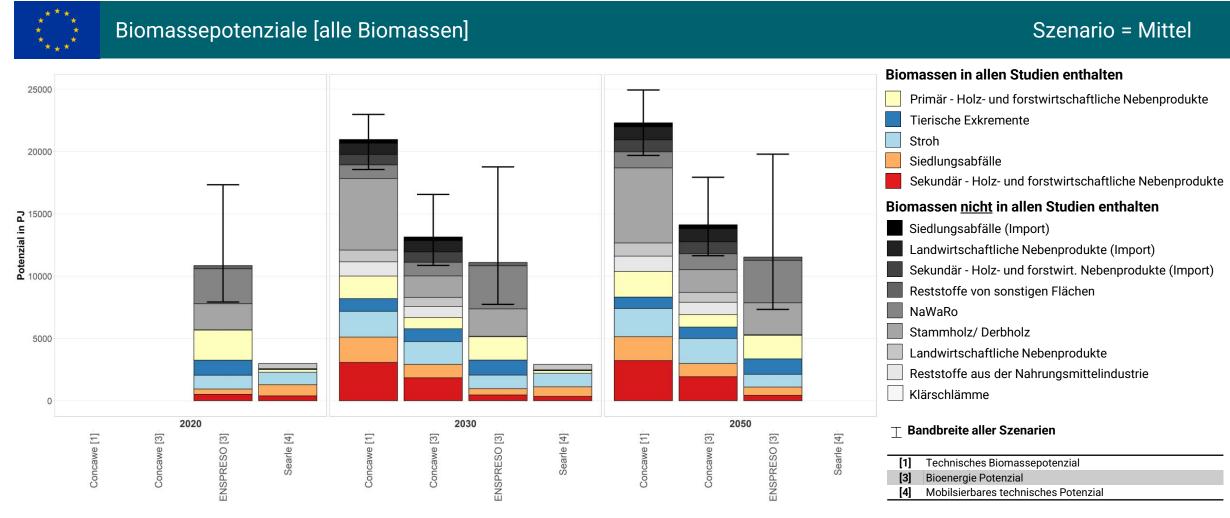


Verfügbarkeit von Biomasse (Fokus biogene Restund Abfallstoffe) in DE, EU und Global

Verfügbarkeit von biogenen Rest- und Abfallstoffen

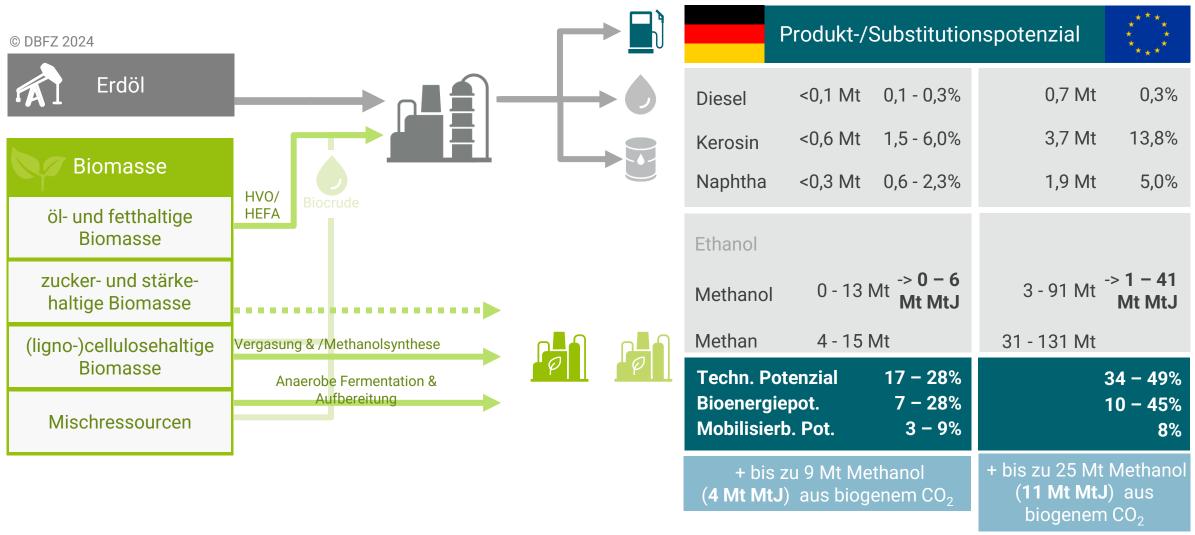

Sind Biomassepotenzialstudien vergleichbar?

Verfügbarkeit von biogenen Rest- und Abfallstoffen Vergleichende Analyse verschiedener Studien DE

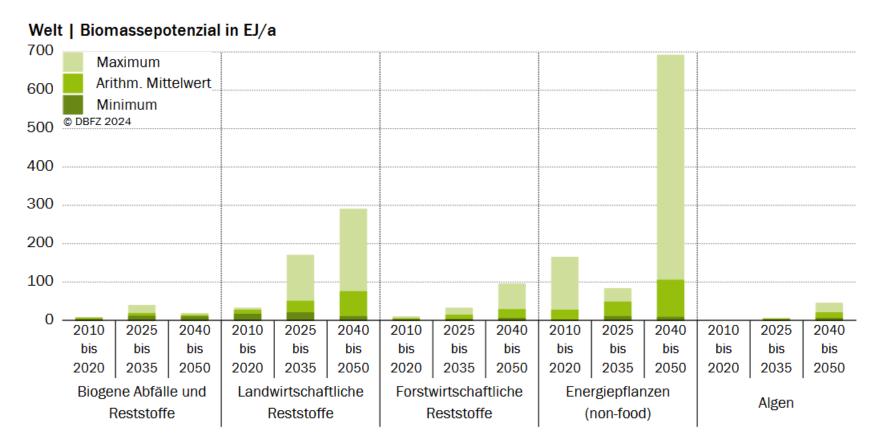


+ etwa 13 Mt biobasiertes CO2 aus Ethanol, Biogas und Biomethan

Verfügbarkeit von biogenen Rest- und Abfallstoffen Vergleichende Analyse verschiedener Studien EU



+ etwa 34 Mt biobasiertes CO2 aus Ethanol, Biogas und Biomethan


Substitutionspotenzial Raffinerieoutput DE & EU Analyse basierend auf Bandbreiten untersuchter Potenzialstudien

Verfügbarkeit von Biomasse Global Vergleichende Analyse verschiedener Studien

- Für 2025 bis 2035: **globales Bioressourcenpotenzial** von ~ **45 bis 375 EJ/a** (Mittelwert 140 EJ/a)
- Ohne Energiepflanzen, Potenzial von 35 bis 282 EJ/a (Mittelwert 90 EJ/a)
- Meist werden technische Potenziale (beinhalten jedoch bestehende Nutzungen) betrachtet, teilweise auch "nachhaltige Potenziale"
- Regulatorische
 Nachhaltigkeitsanforderungen und bestehende/zukünftige
 Nutzungskonkurrenzen unzureichend berücksichtigt

Ausblick Biomassepotenzial-Forschung

Betrachtungsdefizite schließen

Regionale Biomassen und Potenzial internationaler Handel abbilden.

<u>Betrachtungsrahmen</u> (Agroforst, Zwischenfrüchte, Paludikulturen, Gärrestrückführung, biogenes CO₂, etc.) und <u>Nachhaltigkeitsaspekte</u> (RED, LULUCF, Biodiversitäts-VO) <u>erweitern.</u>

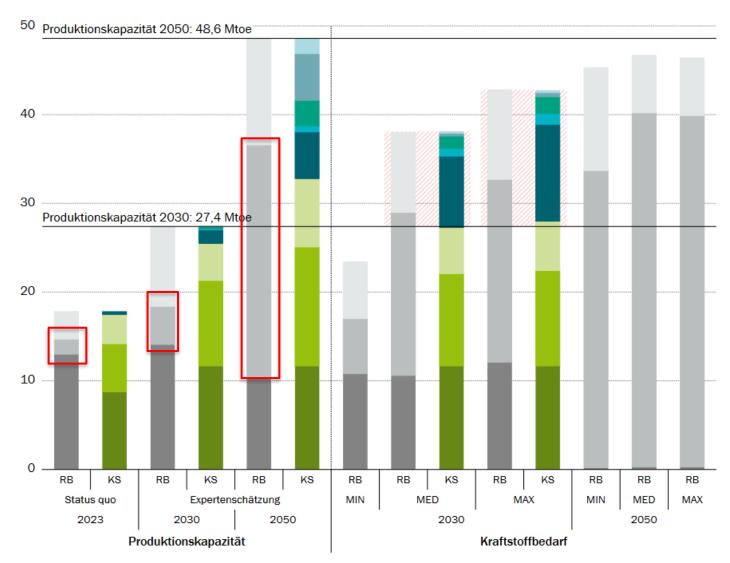
Bedarfsentwicklung in allen Sektoren berücksichtigen.

Mobilisierungs- und Umverteilungsstrategien.

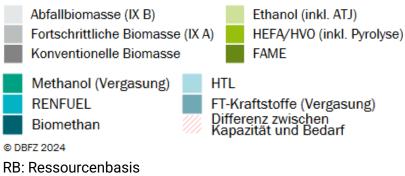
Technologieentwicklung für angepasste Aufbereitung von Biomasse und Gesamtprozessketten.

Rohstoffbedarfe, Produktionskapazitäten und Bedarf Anlagenbau zur Erreichung der 2050er Klimaziele

Rohstoffbedarfe EU gemäß Impact Assessments ReFuelEU Aviation & FuelEU Maritime in Mio. Tonnen


	2030			2050				
	Luftverkehr		Maritime Schifffahrt		Luftverkehr		Maritime Schifffahrt	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Fortschrittliche Biomassen (Annex IX A)								
Energiepflanzen, mehrjährig ^a	0.0	0,0	0,0	0,0	2,3ª	35,4ª	6,3	7,7
Energiepflanzen, einjährig	0,0	0,0	0,3	0,3			33,6	40,8
Forstwirtschaftliche Produkte	0.5	0,5 0,0 3,1 3,2 1,4 1,5	3,1	3,2	1,7	5,0	14,4	18,4
Forstwirtschaftliche Reststoffe	0,5		1,5	Δ,1	5,0	11,7	14,7	
Abfallholz			1,8	1,8			6,7	8,0
Landwirtschaftliche Reststoffe	0,0	5,5	1,5	1,5	5,4	22,0	15,4	18,6
Gülle			1,2	1,2			2,8	3,3
Abfallbiomassen (Annex IX B)								
Altspeiseöl (UCO)	0,7	1,1	0,8	0,8	1,7	2,8	1,4	1,8

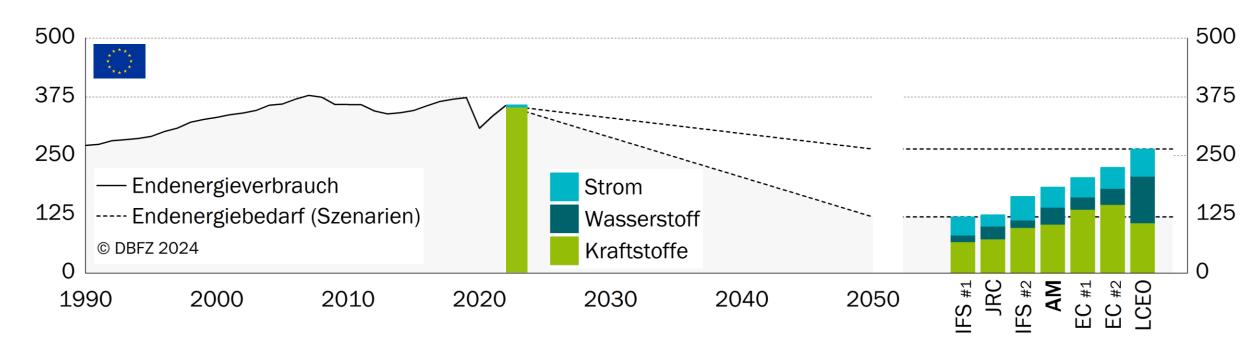
a zum Beispiel Miscanthus, Weide, Pappel


- Hohe Bedarfe (max. ~ 80 Mio Tonnen in 2050) für Non-food-Crops (von degradierten Flächen)
- Große Mengen holzartiger Biomasse
- Regulatorische Unsicherheit aufgrund: Flächendefinition von schwer degradierten Flächen, Ausschlussflächen (Definition Heide; Regulierung in DE im Rahmen BioSt-NachV/ Biokraft-NachV, Umsetzung Kaskadenprinzip (holzartige) Biomasse
- Go-To-Areas als Lösung? Agroforstholz (geringer iLUC*) auch von nicht-degradierten Flächen erlauben?

Produktionskapazitäten Biokraftstoffe EU Gegenüber Kraftstoffbedarfen in Mtoe

- Erhebliche Lücke zwischen den erwarteten Brennstoffproduktionskapazitäten und der Brennstoffnachfrage bis 2030
- Verlagerung auf "fortschrittliche Biomasse"
- » Abhängigkeit von Importen erneuerbarer Brennstoffe
- » Nachteil für die Wettbewerbsfähigkeit der EU
- Stärkere Anreize zur Entwicklung der Produktionsinfrastruktur in der EU schaffen

KS: Kraftstoffarten


MIN: niedrigster Bedarf berücksichtigt RepowerEU Politik MED: mittlerer Bedarf berücksichtigt revidierte RED II

MAX: hoher Bedarf berücksichtigt Fit for 55, gleichmäßige sektorale

Aufteilung (ESR) und erhöhtes Straßenverkehrsaufkommen

Ausblick – Energiewende im Verkehr Endenergiebedarf des Verkehrs in Europa in Mtoe

- # Anteil Strom: mindestens 20 %
- # Anteil Wasserstoff: mindestens 10 %
- # Anteil Kraftstoffe: mindestens 40 %
- # Energiebedarf im Mittel (AM): 185 Mtoe

Kraftstoffverbrauch und -bedarf

Verkehrsart	2023	2050
Land	267 Mtoe	12 - 76 Mtoe
Luft	45 Mtoe	38 - 50 Mtoe
Wasser	43 Mtoe	17 - 21 Mtoe

Technologische Kenndaten eines erneuerbaren Raffineriekonzepts BFZ Nachhaltige Energieträger für einen klimaneutralen Verkehr

Windkraftturbinen

Nennleistung: 14 MW

Kapazitätsfaktor: 60 %

TRL: 11

Wasserelektrolyseure

Nennleistung: 54 MW

Energiebedarf: 55 MWh/t_{H2}

TRL: 9

Biomasse

Mobilisierbare Biomasse als Quelle für Kohlenstoff und Wasserstoff mit vereinfachter Summenformel $(CH_2O)_n$

Photovoltaik-Anlagen

Peakleistung: 220 W_P/m²

Energie-Output: 2,88 kWh/kWp

TRL: 11

DAC-Kollektoren

CO₂-Abscheidungsrate: 230 kg_{CO2}/d

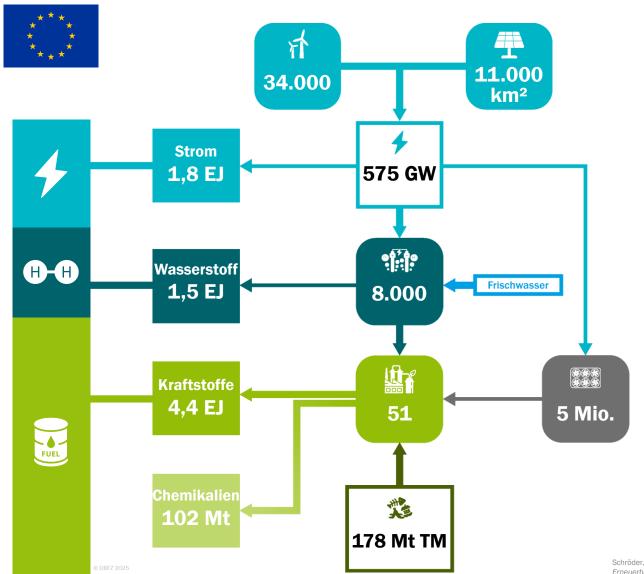
Energiebedarf: 2 MWh/t_{co2}

TRL: 8

Grüne Raffinerien

Ressourcen: 1,3 Mt Wasserstoff

3,6 Mt Kohlenstoff


Produkte: 2,0 Mt Kraftstoffe

TRL: 6 2,0 Mt Chemikalien

Basisszenario

Bedarf an technischer Ausrüstung und Biomasse

Notwendiger Anlagenaufbau pro Jahr für Erreichung der 2050er Klimaziele:

1.350 Anlagen

440 km² PV-Fläche

320 Anlagen

200.000 Kollektoren (460 Anlagen)

2 Anlagen

Mobilisierung von zusätzlich 7 Mt Biomasse (TM) pro Jahr

Fazit & Ausblick Verfügbarkeit und Skalierbarkeit von Biomasse für die SAF-Produktion

- » Sektorale Nutzungskonkurrenzen und teils regulatorische Unsicherheiten als Hemmnisse für einen Hochlauf der SAF-Produktion
 - » >> Notwendigkeit einer Biomassestrategie (ANK BMUKN: "sektorübergreifende Koordinierung des Biomasseeinsatzes)
 & zeitnahe Umsetzung der REDIII
- » Hohe Importabhängigkeiten bei Biokraftstoffen (Rohstoff- und Produktherkunft)
 - » >> Biomasse-Importstrategien sowie außenpolitische Maßnahmen in Bezug auf Biomasse entwickeln
- » Signifikante Substitution von Mineralölprodukten und damit für SAF-Produktion aus biogenen Rest- und Abfallstoffen möglich, jedoch nur begrenzt in bestehender Produktionsinfrastruktur
 - » >> Technologieentwicklung beschleunigen & Betrachtungsdefizite Biomassepotenzial-Forschung schließen
- » Anreize zur Entwicklung der Produktionsinfrastruktur für mehr Wertschöpfung in Europa notwendig
 - » >> neue Instrumente entwickeln (z.B. Grüngasquote) und Import von Biomethan (non-EU) zur Weiterverarbeitung in der EU ermöglichen

Bleiben Sie im Kontakt und nutzen Sie unsere Online-Angebote!

Karl-Friedrich Cyffka

Bioenergiesysteme +49 (0)341 2434 558 Karl-Friedrich.Cyffka@dbfz.de

Fraunhofer IEE 03.11.2025

Mögliche globale Standorte für die PtL-Produktion

Dayana Granford

AGENDA

Fraunhofer IEE – Aktivitäten in Rahmen von PtL-Projekten

Studie ReFuels: Hintergrund & Anforderungen für PtL-Produktion

3 Länderanalyse -Chile

4 Ausblick & Diskussion

Fraunhofer IEE

Übersicht – Forschungsschwerpunkte & Zahlen

rund **450**

Mitarbeiterinnen und Mitarbeiter

rund 40 Mio. €

Jahresbudget

Netzplanung und Netzbetrieb

Netzstabilität und Stromrichtertechnik

Energieverfahrenstechnik und speicher

Thermische Energietechnik

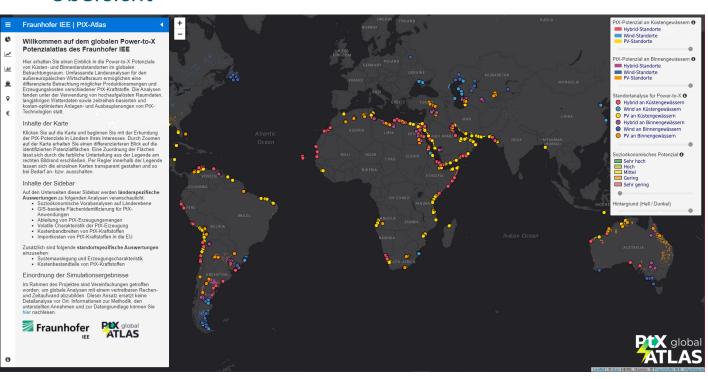
Energieinformatik

Energiewirtschaft und Systemanalyse

Energiemeteorologie und Geoinformationssysteme

Fraunhofer IEE

Ausgewählte internationale Aktivitäten zu PtX/PtL


- Ausbildungsprojekte in der MENA-Region und Südafrika mit GIZ und KfW
- Vorstudien zur Machbarkeit und Systemtransformation in Argentinien und Afrika mit Industriepartnern und GIZ
- Pilotprojekte in Chile und Südafrika begleitende Forschung
- H2-Import nach Europa

Globaler PtX-Atlas, entwickelt vom Fraunhofer IEE Übersicht

Die Bewertung des Potenzials basiert auf umfangreichen Analysen außerhalb Europas, darunter:

- Verfügbarkeit von Land
- Wetterbedingungen
- lokale Wasserverfügbarkeit
- **Naturschutz**
- Investitionssicherheit
- Transportkosten

Mit dem Atlas können Interessierte auf Folgendes zugreifen:

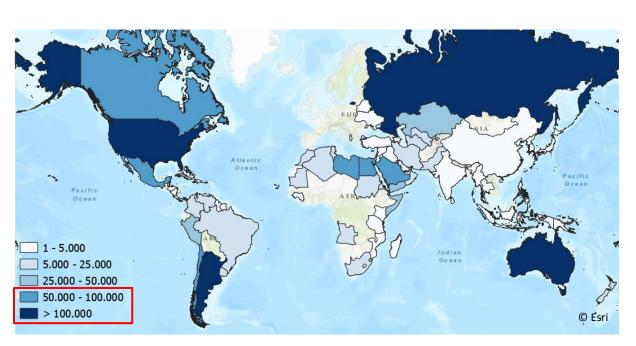
- die Gebiete, die für PtX in Betracht kommen könnten
- die vollen Laststunden
- mögliche Erzeugungsmengen
- die jeweiligen Produktionskosten für die verschiedenen PtX-Energiequellen
- die Kosten für den Transport nach Europa

Kraftstoffe:

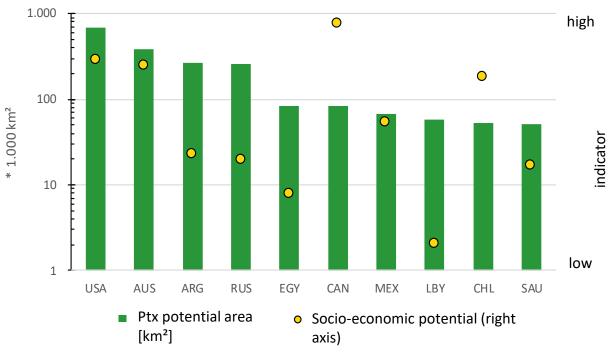
FT-Diesel und Kerosin, Methanol, Methan (SNG), Wasserstoff

© Fraunhofer IFF

Direkter Link zum PtX-Atlas:


https://maps.iee.fraunhofer.de/ptx-atlas/

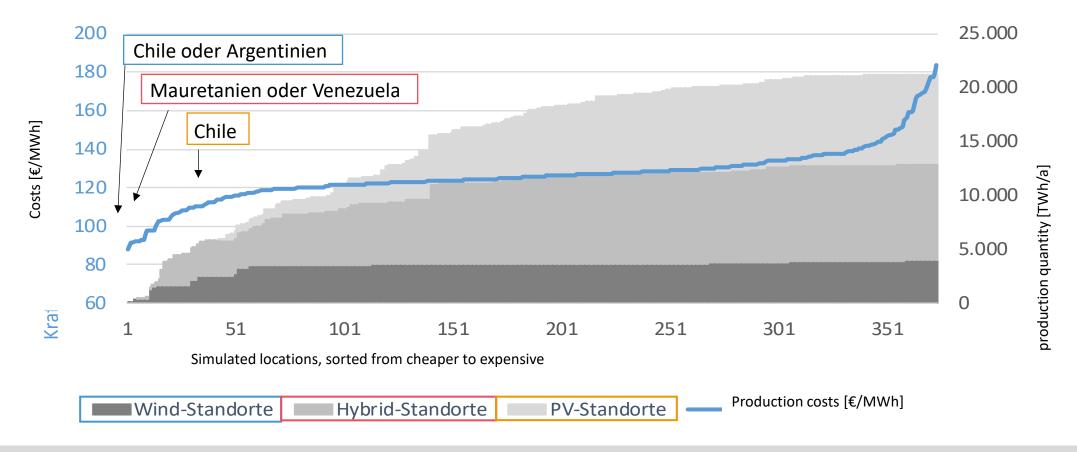
Aggregierte Ergebnisse Geeignete Gebiete für die Produktion von PtX



Länderübersicht über die Verteilung der potenziellen PtX-Flächen in km²

© Fraunhofer IEE

Länderübersicht mit den zehn größten PtX-Landpotenzialen – logarithmische Achse



Aggregierte Ergebnisse

PtX global ATLAS

Produktionskosten und Mengen synthetischer Kraftstoffe

Produktionskosten im Jahr 2050 und kumulierte Produktionsmenge weltweit untersuchter Küstenstandorte für die Herstellung von Fischer-Tropsch-Diesel oder Kerosin unter Verwendung eines Niedertemperatur-PEM-Elektrolysesystems

Studie zum Markthochlauf von reFuels Hintergrund

Ausgangssituation

- Die mittel- und langfristige CO₂- neutrale Energieversorgung Deutschlands wird sich nicht mit den heimischen Erzeugungskapazitäten decken lassen
- Ein vielversprechender Energieträger können synthetische Kraftstoffe aus erneuerbaren Energien, sogenannte reFuels sein
- Neben technischen Fragestellungen sind insbesondere regulatorische sowie marktliche Themen entscheidend, um frühzeitig richtige Schlüsse zur Gestaltung der Importstrukturen und langfristiger Lieferbeziehungen zu legen.

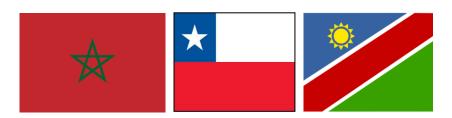
Methodisches Vorgehen & Standortkriterien für die Bewertung Anforderungen für PtL-Produktion

Beschreibung der Länder:

- Allgemeine Einordnungen
- Markt Analyse
- Ressourcen Analyse (EE, CO2 Verfügbarkeit, Wasser)
- Regulatorische Analyse
- Partnerschaft mit EU/Deutschland

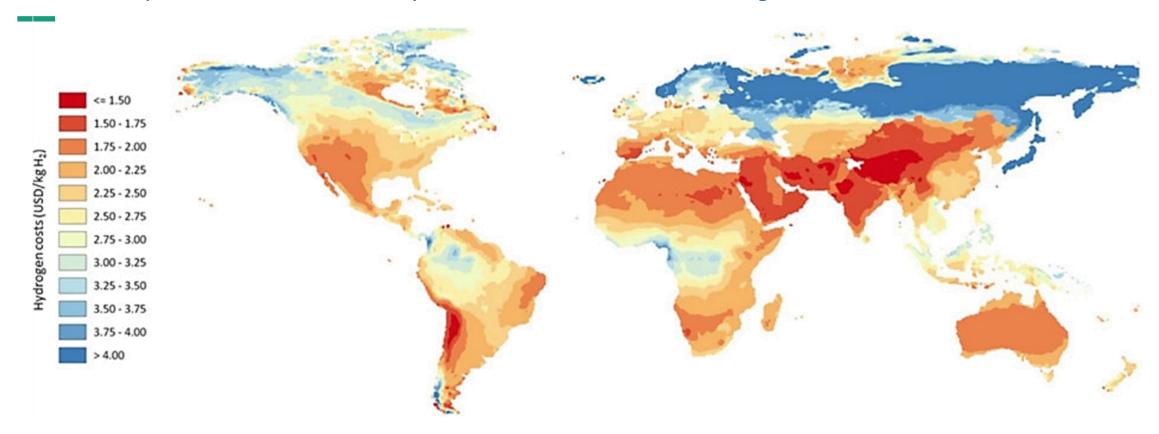
PESTEL – für die Evaluierung auf Vergleichsebene

- Politisch (Kooperationen mit EU, Agenda H2/Derivaten, Fördermittel H2)
- Ökonomisch (H2-Export potential, Eigenbedarf H2, Decarbonisierungspotential)
- Sozial (Bildungsniveu, Korruption, Demographie)
- Technisch (H2/Derivaten-KnowHow, Industrieanlagen)
- Ökologisch (Wasser, Vorhandenen Ressourcen)
- Rechtlich (Wasserstoff-strategie)


SWOT-Analyse:

- Resilienzfaktoren (Stärken + Risiken)
- Vulnerabilitäten (Schwächen + Risiken)
- Innovationsfaktoren (Stärken + Chancen)
- Verpasste Potentiale (Schwächen + Chancen)

Methodisches Vorgehen & Standortkriterien für die Bewertung Anforderungen für PtL-Produktion


- Datengrundlage
- Desktop Research:
 - Zugriff auf vorhandene Literatur, Datenbanken und Webseiten.
- Literaturdurchsicht:
 - Wissenschaftliche Veröffentlichungen und Branchenberichte
- Länder in der Studie:

Länderanalyse: PtL-Produktion erfordert eine "Multikriterielle Analyse" – Beispiel Chile

Chile auf der globalen LCOH-Karte

Wasserstoffproduktionskosten aus hybriden Solar-PV- und Windanlagen im Jahr 2030

Chile hat einen Wettbewerbsvorteil in der Produktion von Wasserstoff aus erneuerbaren Energiequellen (<1,5 USD/kg H2), hauptsächlich aufgrund der niedrigen Kosten für Solar- und Windenergie, mit dem Potenzial, jährlich 160 Millionen Tonnen grünen Wasserstoff zu produzieren

Länderprofil Chile

Ressourcen Analyse

- Erneuerbare Kapazität: 34 GW of total installed capacity in 2023, with approx. 64% of renewable share,
- CO2-Quellen: ~ 7 Mt/a CO2 von Zellstofffabriken
- Entsalzungsanlage jährliche Gesamt Kapazität: ~335 Mio. m3/a
- Potenzial, jährlich 160 Millionen Tonnen grünen Wasserstoffs zu produzieren.

Marktanalyse

- Viel Potenzial für erneuerbare Energien (1.800 GW), aber Probleme bei der Übertragung, was in einigen Regionen zu Einschränkungen führt.
- Zusammenarbeit mit Europa, Südkorea, Japan und der Weltbank
- Chile hat seit 2017 eine Kohlenstoffsteuer. ETS und Carbon Credit Mechanism werden aktuell entwickelt
- 44 projects, 24 are in 'Development phase', 5 in 'Implementation phase' and 7 are 'in Operation'.
 - Total capacity: 38 GW
 - 23 hydrogen projects (5,1 GW)
 - 19 ammonia projects (electrolyzer capacity: 32,6 GW)
 - 2 e-fuels projects (243 MW)

Export Infrastruktur

- Hafen in Mejillones (im Norden)
- Hafen in Magallanes (im Süden)

*

Regulatorische Analyse & Partnerschaften

- Green Hydrogen Action Plan 2023-2030
 - Laut Maßnahme 79 Entwicklung eines strategischen Vorschlags für ein Zertifizierungssystem,
- Absichtserklärung zwischen Deutschland & Chile: ja
- Wasserstoffstrategie vorhanden: ja
 - Laufend Aktualisierung der nationalen Strategie für grünen Wasserstoff
- Wasserstoffpartnerschaft vorhanden :
 - 1. Deutsch-Chilenische Energiepartnerschaft-2019
 - 2. GH2 Team Initiative -2022

	2025	2030
•	5 Mrd. USD Investition in grünen Wasserstoff	 205 Mrd. USD/a – Führer im Export von grünen Wasserstoff und Derivaten
	200 kt/a	 < 1.5 USD/kg – günstigster grüner Wasserstoff weltweit
•	5 GW Elektrolyseur-Kapazität	 25 GW Elektrolyseur-Kapazität

2025 - 2030 Ziele

Diskussion für die PtL-Produktion....

- Standortbewertung erfordert eine multikriterielle Analyse (EE-Potenziale, Wasser, Infrastruktur, CO₂, Politik, Kosten)
- Wenige Regionen erfüllen alle Kriterien optimal
 → meist Kompromisse zwischen Kosten, Nachhaltigkeit und Exportfähigkeit
- Chile als aussichtsreicher Standort
 - Sehr gute Wind- und Solarressourcen
 - Verfügbarkeit geeigneter CO₂-Quellen (v. a. Zellstoff- und Papierindustrie)
 - PtL-Pilotprojekte (z. B. Haru Oni) zeigen Umsetzbarkeit
- Potenzielle Erfolgsfaktoren für den PtL-Hochlauf
 - Klare regulatorische Rahmenbedingungen
 - Bilaterale Kooperationen und internationale Investitionen
 - Offtake Agreements für Absatzsicherheit

Vielen Dank für Ihre Aufmerksamkeit

Kontakt

Dayana Granford Bioenergiesystemtechnik

Dayana.granford.ruiz@iee.fraunhofer.de

Fraunhofer IEE
Joseph-Beuys Straße 8
34117 Kassel
www.iee.fraunhofer.de

- Estrategia Nacional de Hidrógeno Verde Chile (2021) Retrieved from https://energia.gob.cl/sites/default/files/documentos/green h2 strategy chile.pdf
- NATIONAL GREEN HYDROGEN STRATEGY Chile (2020) Retrieved from https://energia.gob.cl/sites/default/files/national_green_hydrogen_strategy-chile.pdf
- Factsheet EU_Chile_en_final. Retrieved from https://www.eeas.europa.eu/sites/default/files/documents/Factsheet%20EU_Chile_en_final.pdf
- Farhanja Wahabzada (GIZ), Sarah Duhr (GIZ), Paula Klöcker (GIZ), Veit-Clemens Raisch (GIZ), Hatim Ksissou (GIZ), Yasmine Boutaib (GIZ), Frank Renken (GIZ), Salaheddine Bouzerd (GIZ), Kristina Kramer (GIZ), Aschkan Davoodi Memar (GIZ), Rainer Schröer (GIZ), Daina Neddemeyer (GIZ), Michael Schmidt (GIZ), Marco Huels (GIZ), William Jensen Diaz (GIZ), Andreas Betz (GIZ), Nicole Täumel. H2-Business-Guide: Bilateral energy partnerships in developing countries and emerging economies. (2022). Retrieved from https://www.energypartnership.cl/fileadmin/user_upload/chile/media_elements/H2-Business-Guide_eng.pdf
- (HyResource 2023), https://research.csiro.au/hyresource/policy/international/chile/
- Herrera-León, S., Cruz, C., Kraslawski, A., & Cisternas, L. A. (2019). Current situation and major challenges of desalination in Chile. DESALINATION and WATER TREATMENT, 171, 93–104. https://doi.org/10.5004/dwt.2019.24863
- Team Europe Initiative, GIZ: *Green hydrogen cooperation with chile*. Retrieved from https://www.eeas.europa.eu/sites/default/files/documents/2023/TEI%20RH2%20Brochure%20%28ENG%29.pdf
- TEI con diseño para website rev (ENG).docx. Retrieved from https://www.eeas.europa.eu/sites/default/files/documents/TEI%20Resume%20ENG.docx.pdf

- Weidl, C. EP_CHL_Production_of_green_sustainable_hydrogen_final_ISBN. Retrieved from
 https://www.energypartnership.cl/fileadmin/user_upload/chile/media_elements/Studies/EP_CHL_Production_of_green_sustainable_hydrogen_final_ISBN.pdf
 BN.pdf
- Zabanova, Y. The EU in the Global Hydrogen Race: Bringing together Climate Action, Energy Security, and Industrial Policy. Retrieved from https://publications.rifs-potsdam.de/rest/items/item 6003218 2/component/file 6003219/content
- (HYPAT 2023), HYPAT Working Paper 06/2023, HYPAT Working Paper 06/2023. Interdependencies between national energy transitions and international hydrogen cooperation (fraunhofer.de)
 - https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2023/HYPAT%20WP 06 2023 National%20energy%20transitions V01.pdf
- Global Energy Monitor (2023), Global Steel Plant Tracker. Retrieved from https://globalenergymonitor.org/projects/global-steel-plant-tracker/tracker-tracker/tracker-map/
- Juan- Cristóbal Ciudad (2008), Chile Presentation to the OECD Steel Committee, https://www.cochilco.cl/Research/Chile-Presentation-to-the-OECD-Steel-Committee.pdf
- Fluent Cargo, Chile to Germany by Container Ship. Retrieved from https://www.fluentcargo.com/routes/chile/germany
- IRENA (2023), Energy Profile Chile. Retrieved from https://www.irena.org/ /media/Files/IRENA/Agency/Statistics/Statistical_Profiles/South%20America/Chile_South%20America_RE_SP.pdf
- International Carbon Action Partnership (2022), Chile ETS. Retrieved from https://icapcarbonaction.com/system/files/ets pdfs/icap-etsmap-factsheet-54.pdf
- Global Cement Report, Cement Pants located in Chile. Retrieved from https://www.cemnet.com/global-cement-report/country/chile

- Yury Villagrán-Zaccardi, Ricardo Pareja, Lina Rojas, Edgardo Irassar, Andrés Torres-Acosta, Jorge Tobón, Vanderley M. John, (2022), Overview of cement and concrete production in Latin America and the Caribbean with a focus on the goals of reaching carbon neutrality. Retrieved from <a href="https://letters.rilem.net/index.php/rilem/article/download/155/160/1588#:~:text=In%202019%20(before%20the%20COVID,10.6%20Mt)%20%5B3%5D.
- The World Bank (2023), Carbon Pricing Dashboard, Retrieved from https://carbonpricingdashboard.worldbank.org/map_data
- (Our World Data 2023): Hannah Ritche and Max Roser (2023), CO2 and Greenhouse Gas Emissions. Retrieved from: <u>https://ourworldindata.org/co2/country/chile</u>
- International Monetary Fund (2023), *Chile: Technical Assistance Report-An Evaluation of Improved Tax options*. Retrieved from https://www.imf.org/-/media/Files/Publications/CR/2023/English/1CHLEA2023001.ashx
- (GIZ 2021) INODÚ Chile energy&sustainability, Jorge Moreno, Tomas Meyer, Victoria Frohlich (2021), *Analysis of Carbon Capture for the Production of Synthetic Fuels in Chile*. Retrieved from https://www.energypartnership.cl/fileadmin/user_upload/chile/media_elements/Studies/20210818_Carbon_Capture_ExecSummary.pdf
- (Swaton 2023): Florian Swaton, (2023), Techno-ökonomische Analyse von CO2-Bereitstellungsoptionen zur Herstellung kohlenstoffbasierter PtX-Produkte, Master Thesis.
- Low Carbon Power (2023), *Electricity in Chile in 2023*. Retrieved from https://lowcarbonpower.org/region/Chile
- EnArgus (2024): https://www.enargus.de/pub/bscw.cgi/26?op=enargus.eps2&m=0&v=10&p=0&s=14&q=+Power-to-MEDME
- HIF Global (2023): Haru Oni HIF Global. Available online at https://hifglobal.com/location/haru-oni/

- Siemens Energy (2023): Haru Oni: eFuel plant of the future. Available online at https://www.siemens-energy.com/global/en/home/stories/haru-oni.html
- Energy Partnership Chile Alemania: Energy Partnership Chile-Alemenia. Retrieved from https://www.energypartnership.cl/home/
- GIZ & Energy Partnership Chile-Alemania: Energy Partnership Chile-Alemania (2022). Retrieved from: https://www.giz.de/en/worldwide/82670.html
- Burford, Sofia (2022), Prefeasibility study for a synthetic fuel project in the Magallanes region based on green hydrogen. Retrieved from https://energia.gob.cl/sites/default/files/ch-t1235-p003 final report 28-03-2022 vf.pdf
- RFNBO compliance analysis of products produced from renewable hydrogen and different sources of CO2 in Uruguay and Chile with the EU's renewable energy directive: https://hinicio.com/wp-content/uploads/2024/09/2405-RFNBO-Compliance-Analysis-of-Products-Produced-from-H2.pdf
- https://www.planhidrogenoverde.cl/
- GIZ et al. "Propuesta estratégica para sistema de certificación de sostenibilidad de hidrógeno y derivados en Chile". 2025. Available online.
 https://dechile.cl/wp-content/uploads/2024/09/GIZ-Propuesta-estrategica-de-sistema-de-certificacion-de-hidrogeno-y-derivados-en-Chile.pdf

Auswirkungen auf Regionen und Länder im Globalen Süden

Supported by:

on the basis of a decision by the German Bundestag

Implemented by

on the basis of a decision by the German Bundestag

International PtX Hub - Aviation activities

Technical assistance to countries on SAF strategy, e.g. identifying opportunities, pre-feasibility (Kenya, Algeria, as pilot countries)

PtX Basic training, aviation deep dive training, and train of trainer programme

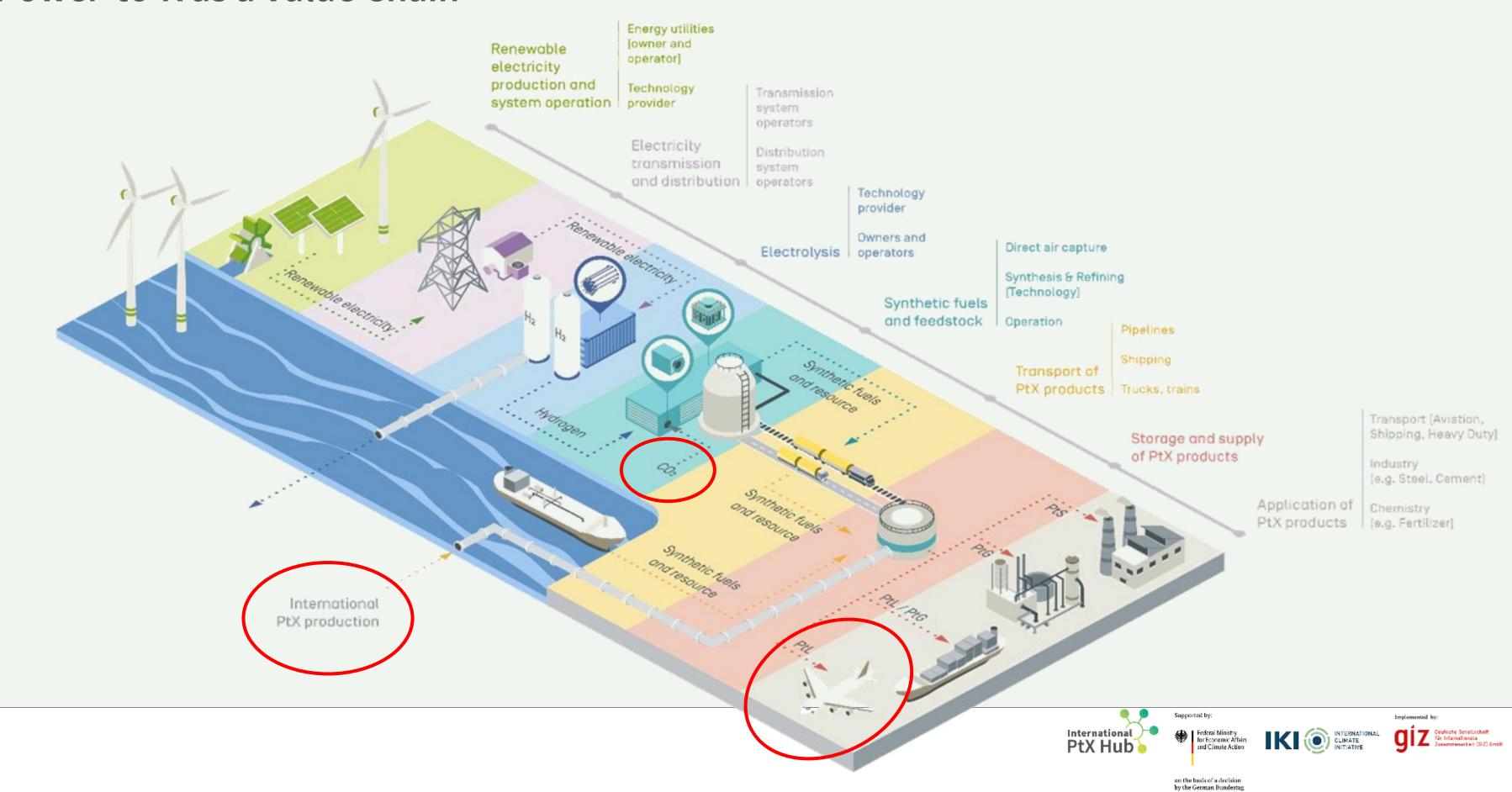
Creation of studies, papers, and more in collaboration with experts and consultants

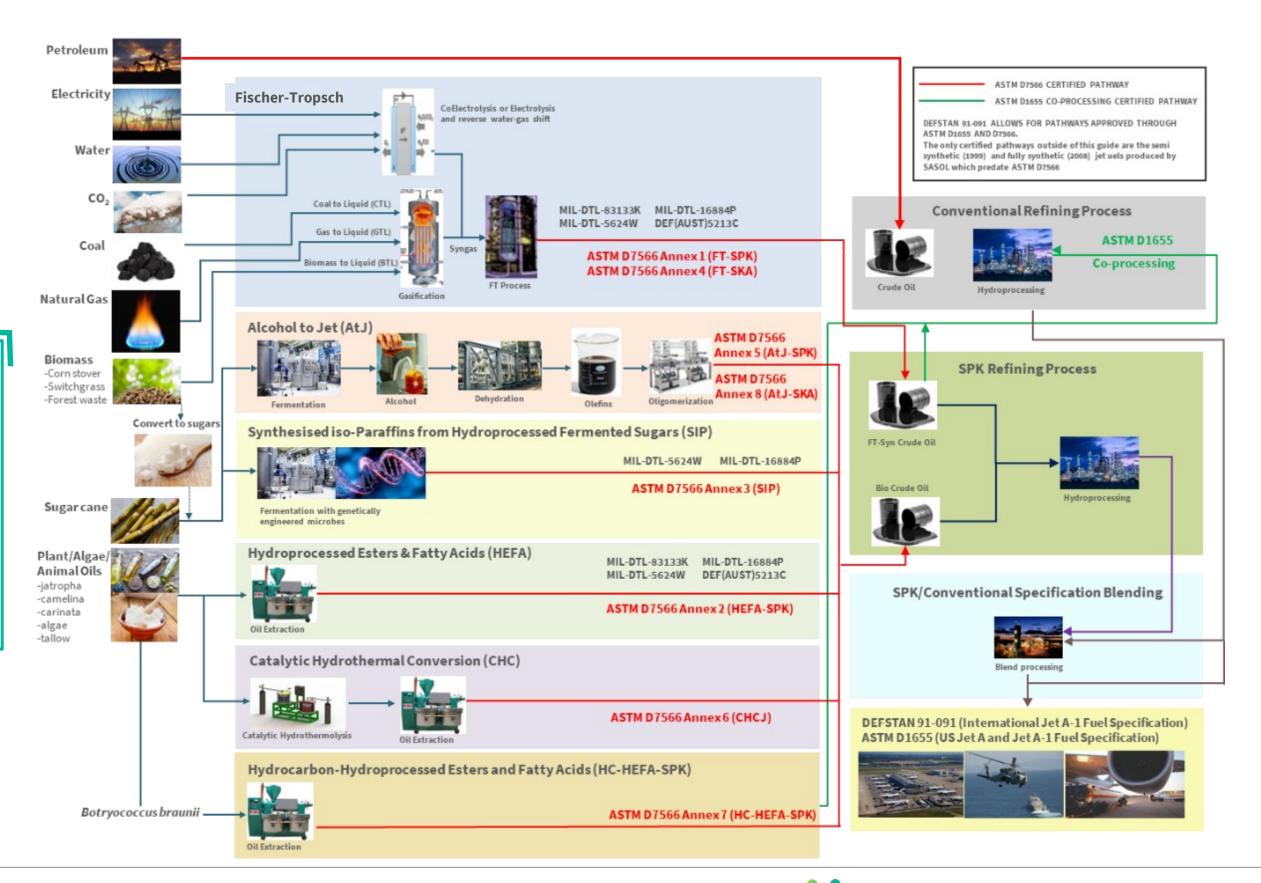
<u> Aviation - Knowledge Base - PtX Hub</u>

Discussions and stakeholder dialogues on new pathways and international collaboration in aviation

Orchestrating innovative financing for selected large scale SAF projects

Partner to national and international fora on sustainable aviation, AKKL/ AG SAF, International Civil Aviation Organisation (ICAO)
partner for ACT-SAF & FINVEST programmes

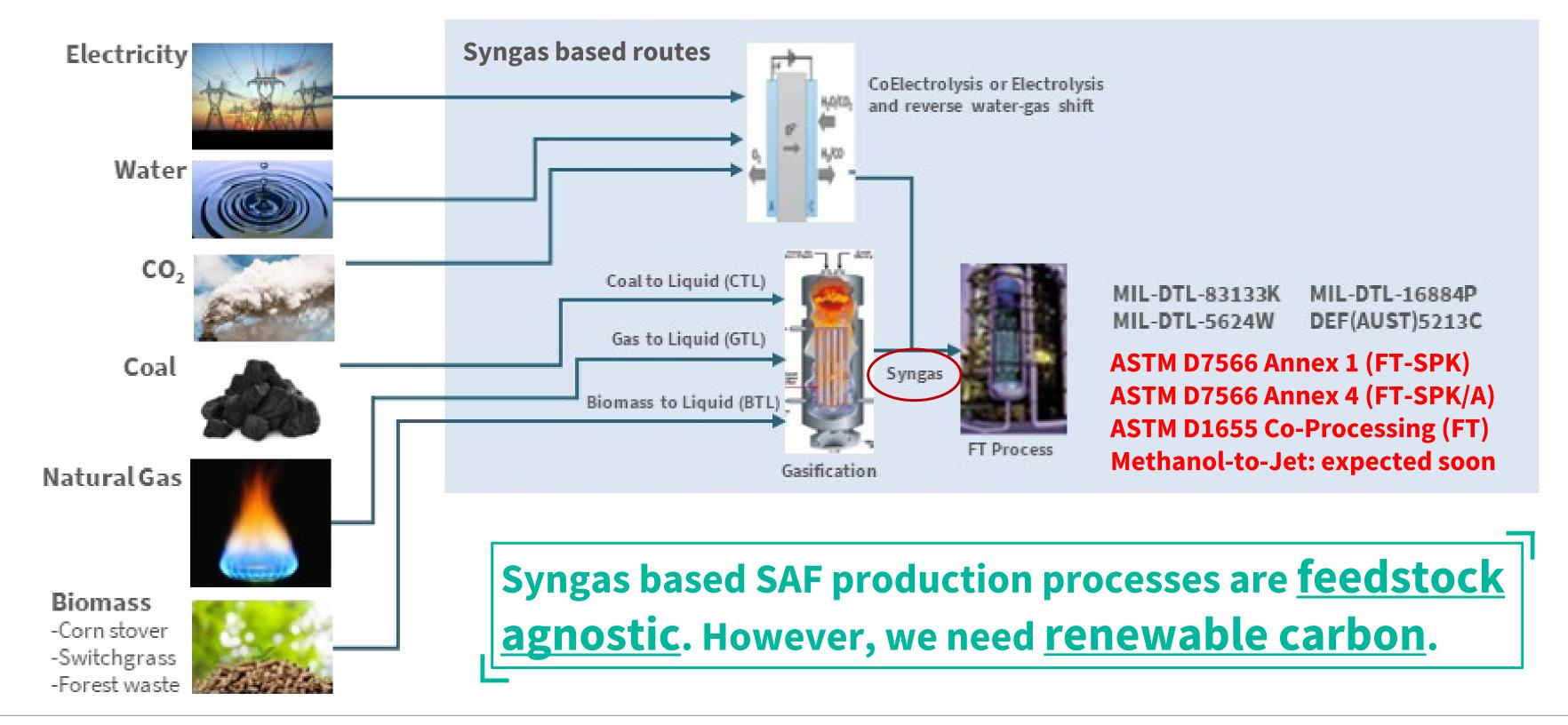




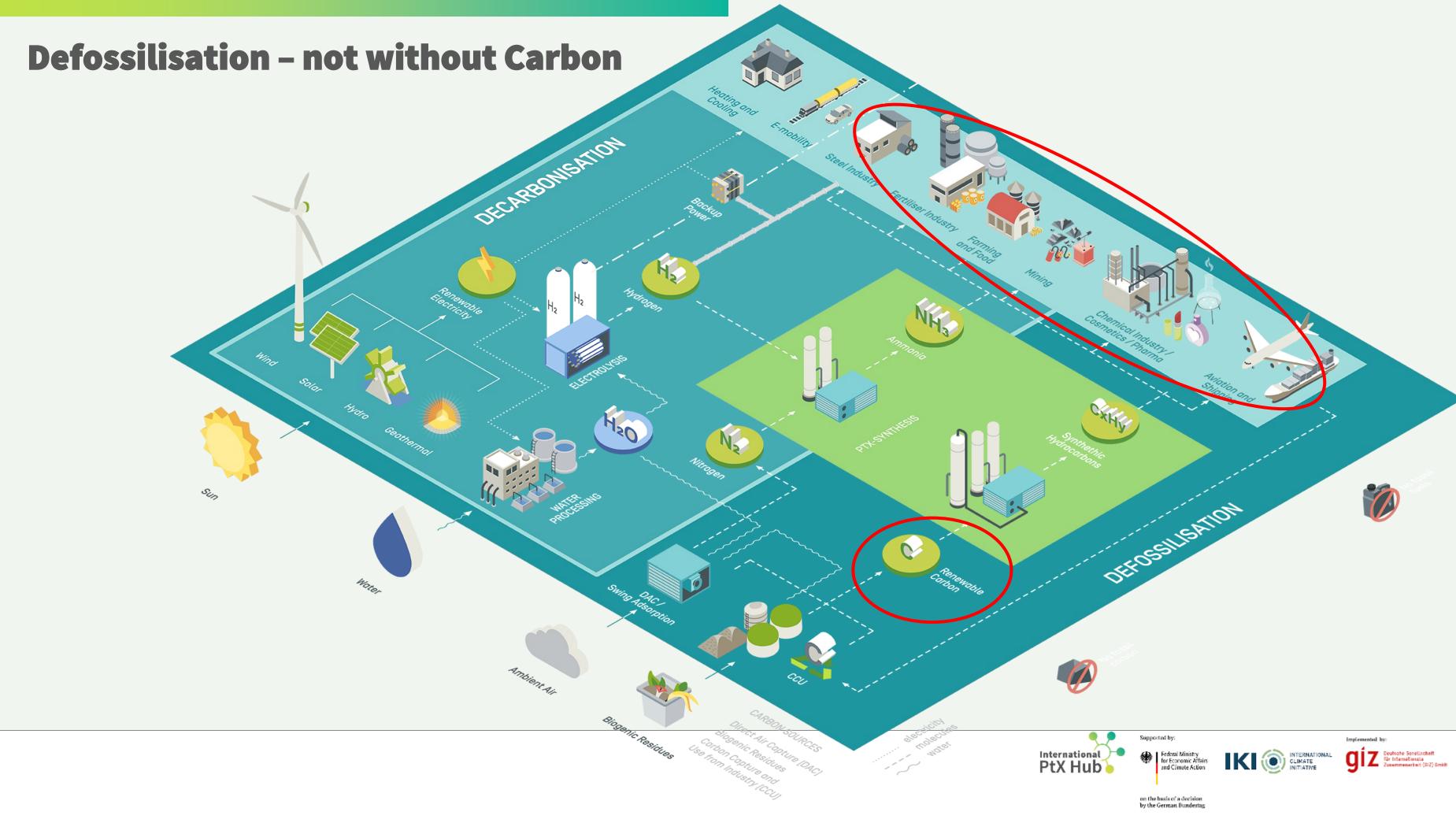
Power-to-X as a Value Chain

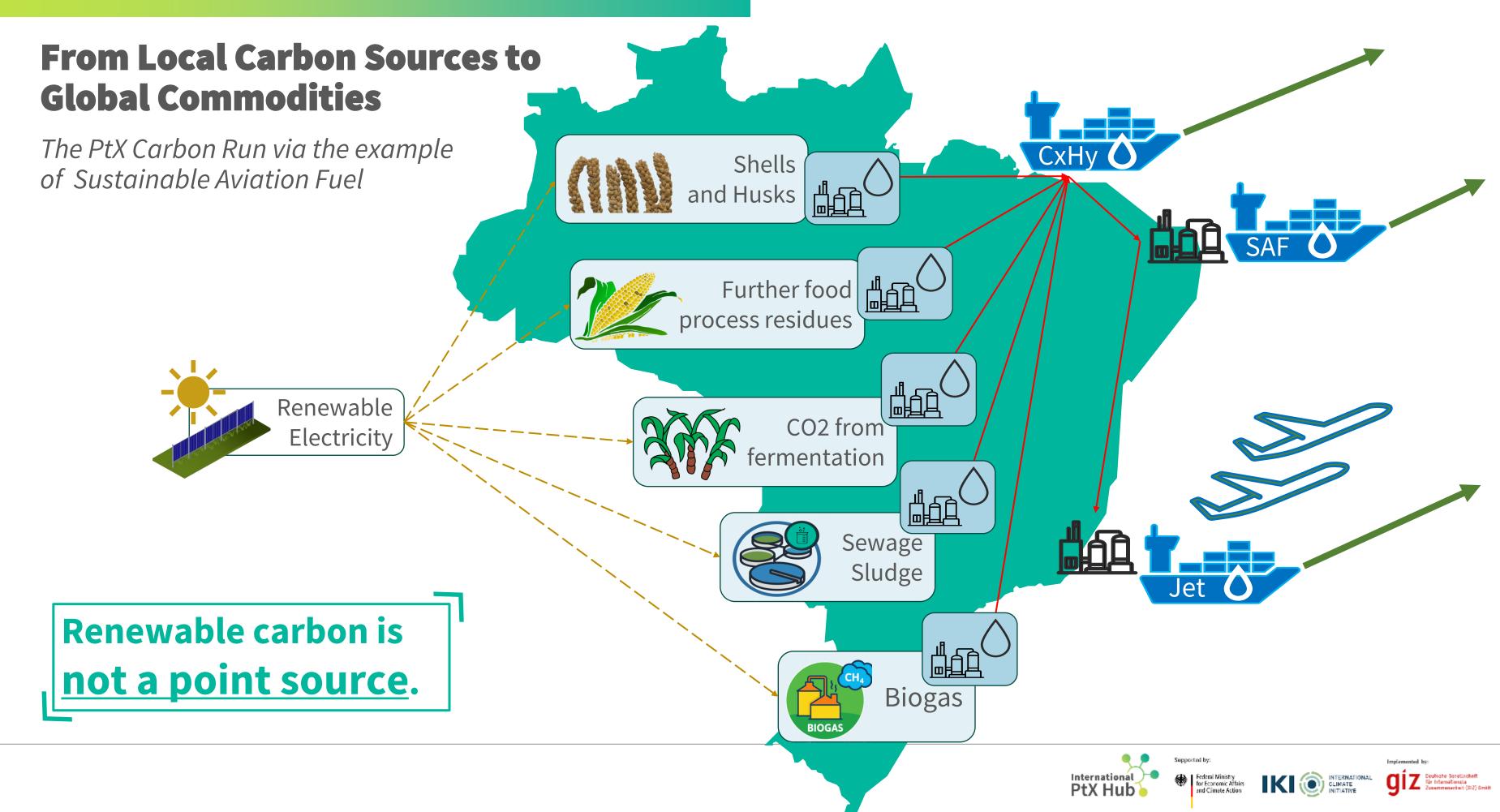
SAF pathways

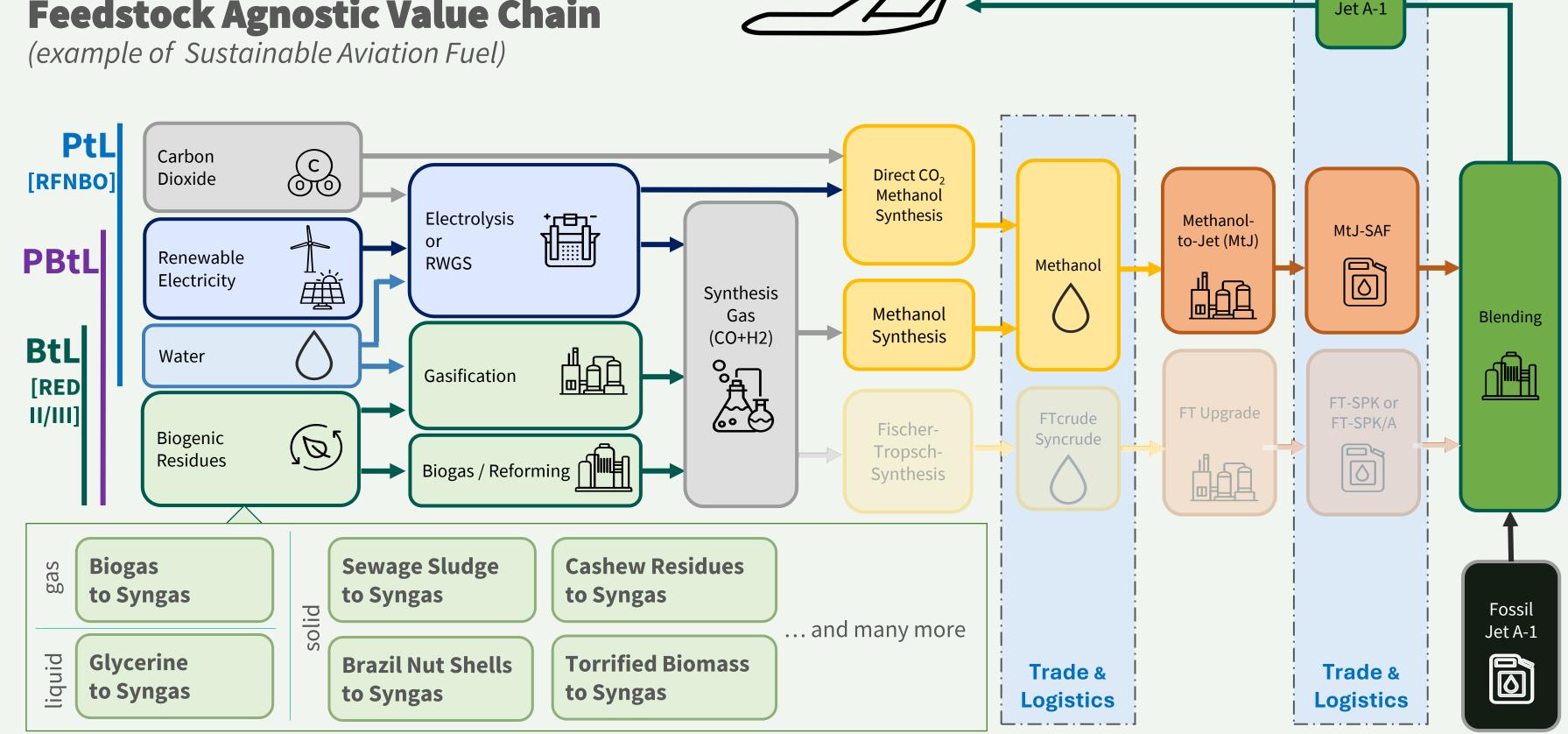
Most SAF production routes are specific to a certain feedstock, each of which is <u>restraint in total volume</u>.



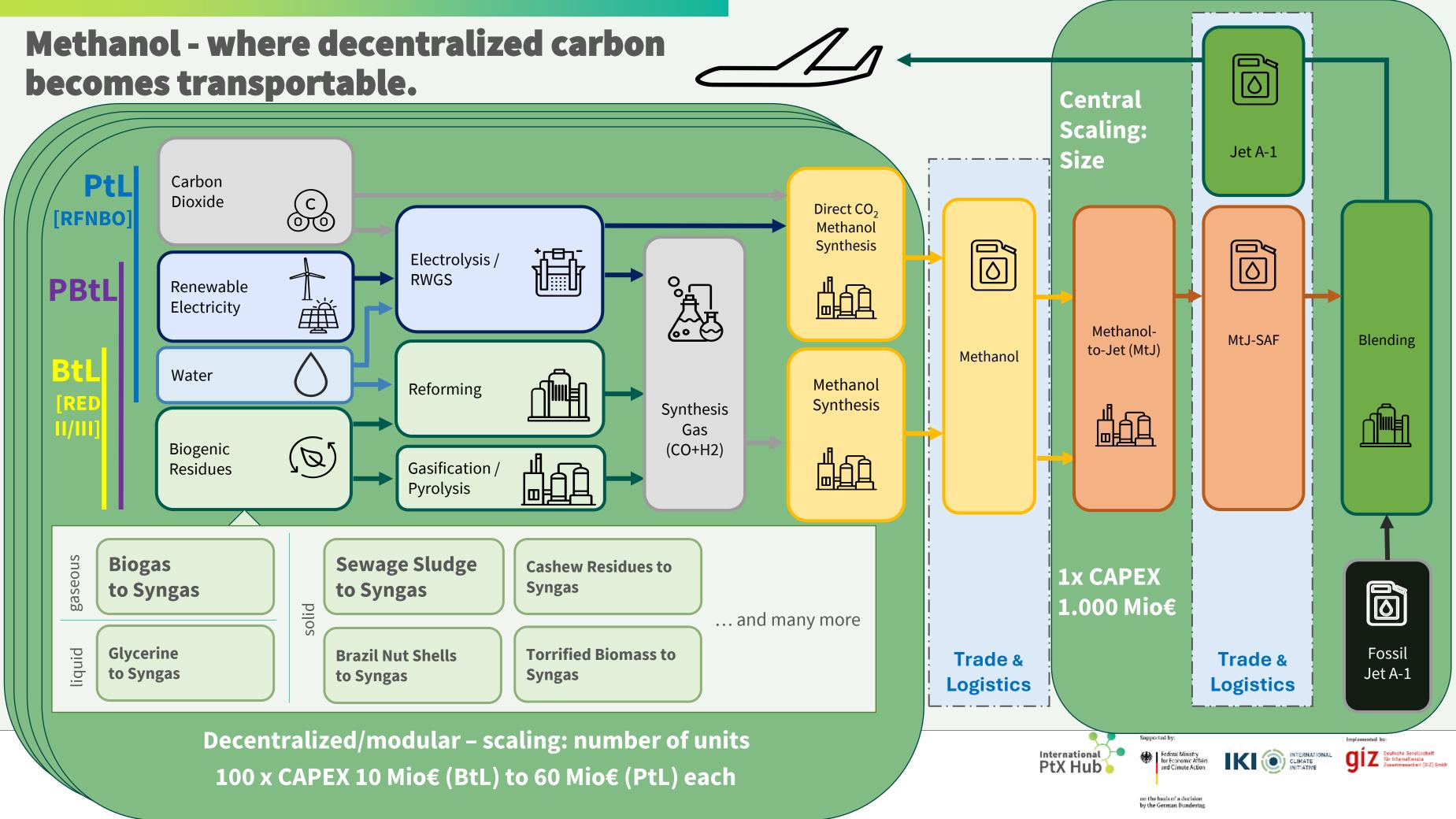
SAF pathways via syngas

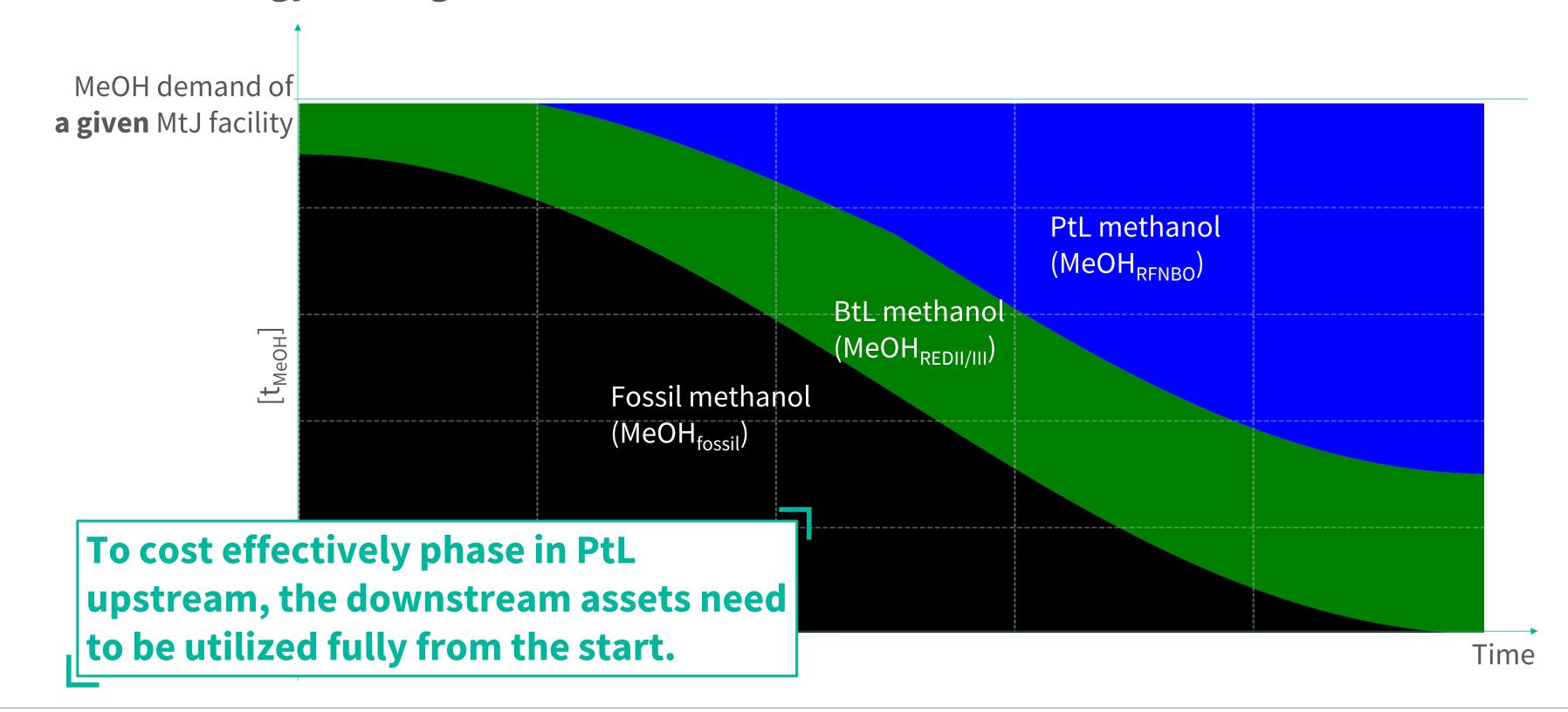




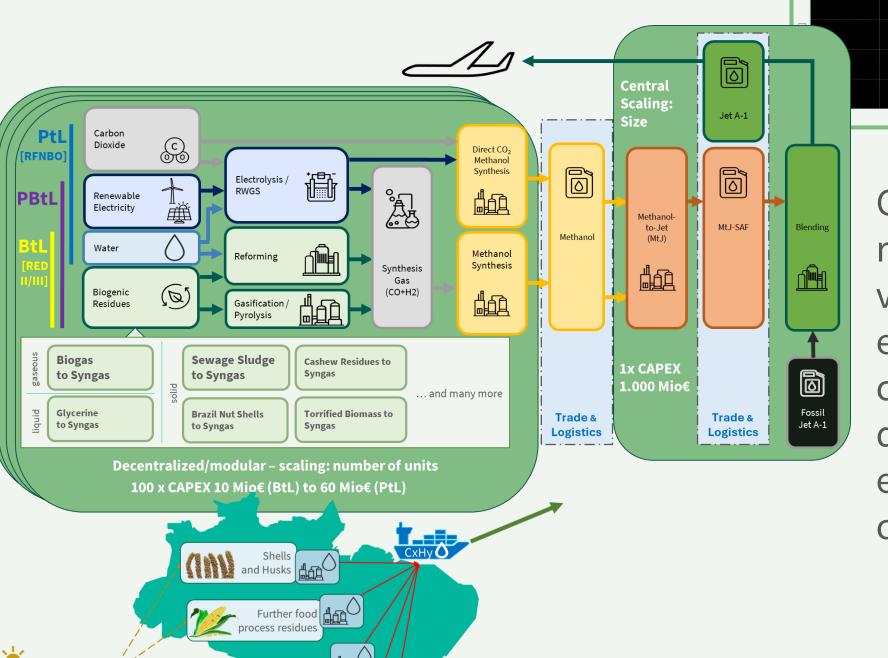


Feedstock Agnostic Value Chain





Phase in strategy for large volumes of methanol based Sustainable Aviation Fuel

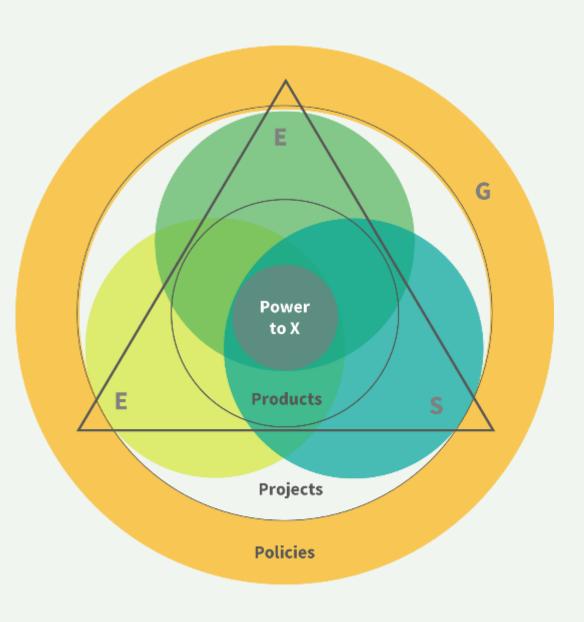


PtX Carbon Run

Cost-efficient sourcing of renewable carbon from the Global South, using modular, type-approved, and mass-produced plants that represent a new class of capital goods and bring sustainable development to their respective regions.

Centralized production of renewable end products via traditional plant engineering, established compliance with product quality standards, and existing distribution channels.

on the basis of a decision



Auswirkungen auf die Regionen des globalen Südens - Potenziale

- ✓ Lokale Ressourcen nutzen und handeln
- ✓ Nachhaltige Industrieentwicklung durch Leapfrogging fossiler Technologien
- ✓ Exporte generieren Einkünfte und Wohlstand
- ✓ Lokale Produktionen ermöglichen soziale Teilhabe & Jobs
- ✓ Entwicklung von Infrastruktur für Energiezugang und Transport
- ✓ Anerkennung als globaler Handelspartner

Sustainable carbon sourcing examples

OUR SOLUTIONS

Africa's Feedstock Revolution

Through our value-added approach to feedstock management, we deliver benefits acros social impact, and environmental sustainability.

AfriSAF

Unlocking Africa's Sustainable **Energy Potential**

AfriSAF is revolutionising access to Africa's vast agricultural feedstock as a project enabler and developer. Through our digital marketplace platform, we connect feedstock owners with buyers while facilitating logistics and providing support services.

Sustainable **Agriculture**

Partnerships with agricultural out-growers and commercial farmers to produce energy oil crops by intercropping or using damaged or deserted land.

Digital Marketplace

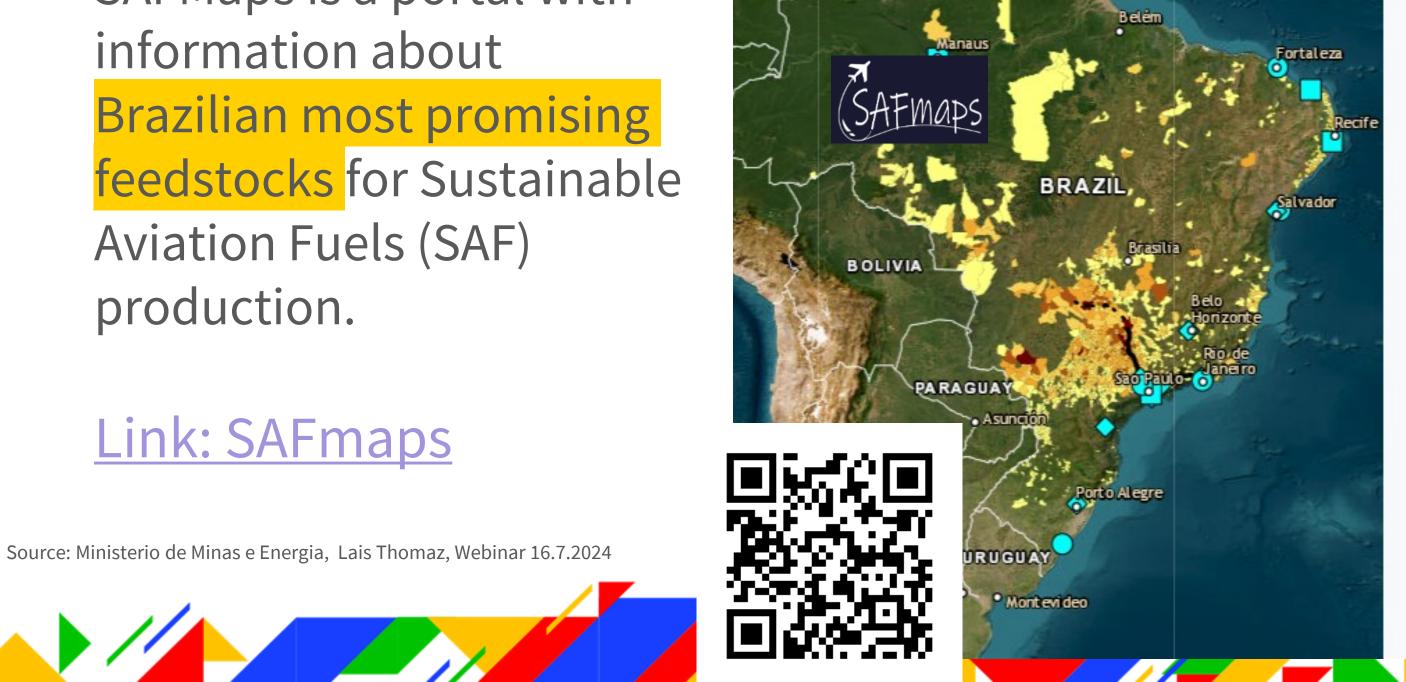
Connecting feedstock owners with buyers while providing logistics and support services to build a robust feedstock economy.

Community **Empowerment**

Creating economic opportunities for local communities across Africa while ensuring sustainability.

Economic Development

Driving economic growth through strategic partnerships, project development and sustainable initiatives.



Sustainable carbon sourcing examples

SAF Maps Brazil

SAFMaps is a portal with

HOME

Georgetown

GUYANA

VENEZUELA

MBIA

ABOUT

DATABASE

Eucalyptus * Soybean Macaw oil Sugarcane * Steel off-gases Tallow Support Maps Sustainability criteria

Sugarcane (Resid

Available layers Report

Base maps

- Sugarcane total residues by municipal
- Sugarcane bagasse by municipality Sugarcane straw by municipality

Infrastructure

- Main roads
- Railroads Gas and oil pipelines
- Ethanol pipelines
- Waterways

Complementary information

Airports

Oil refineries (refining capacity)

Ethanol distilleries

Ethanol terminals

SAF Maps Brazil

on the basis of a decision by the German Bundestag

Auswirkungen auf die Regionen des globalen Südens – Herausforderungen

- fehlende Regulierung vor Ort = fehlende Sicherheit für Investoren
- Abnahmemarkt EU: zu komplexe / strikte Regulierung von grünen Produkten
- Internationale Ratings: Sicherheitsgarantien für internationale Investition z.B. Korruptionsbekämpfung
- Partner finden für FOIK-Projekte: Keine one-fits-all-Lösun da ganz neue
 Wertschöpfungsketten entstehen
- Mehr Bildung und Forschung vor Ort

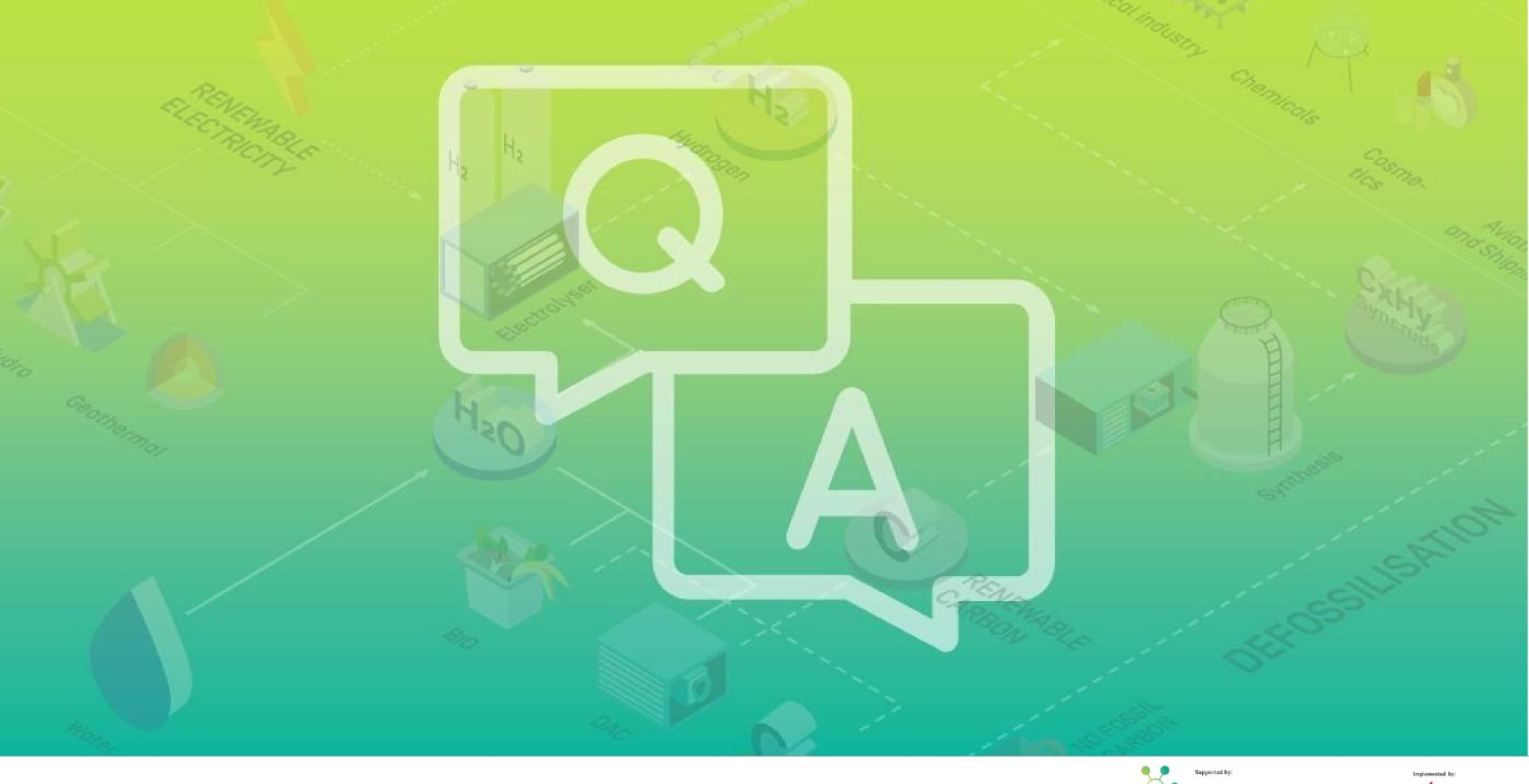
Carbon Potential Studies – Namibia – Südafrika – Brasilien - Argentinien - Uruguay

Namibia – "Sustainable extraction of bush encroachment: 486 million tonnes / 26 years 18.7 million tonnes (dry matter) per annum - sufficient to meet the national power requirements for more than 140 years.", "Integrate Advanced Biofuels Strategy with the Green Hydrogen Strategy: To fully leverage the potential of the hybrid Biomass PtX pathway, an integrated strategy for advanced biofuels and green hydrogen should be developed."

Brazil & South Africa – focus Industrial point sources

"If South Africa were to substitute all projected fossil fuel consumption with locally produced synthetic fuel, there would **be potentially enough captured CO2 from its point sources to meet that 'domestic' demand**. Further, there is also significant CO2 surplus that could be utilised for exports. **However, sustainability considerations would limit** the available quantities that can in principle be eligible for exports to international markets."

Argentina - "**Retrofitting existing natural gas pipelines** for the transport of CO2 would not be feasible in the country, due to technical limitations and the future national plans of natural gas usage" / "Patagonia offers a **matching of RE and CO2 sources**"



JAM Study: Development of a sustainable carbon carrier for PtX use: from Namibia to a global market - PtX Hub

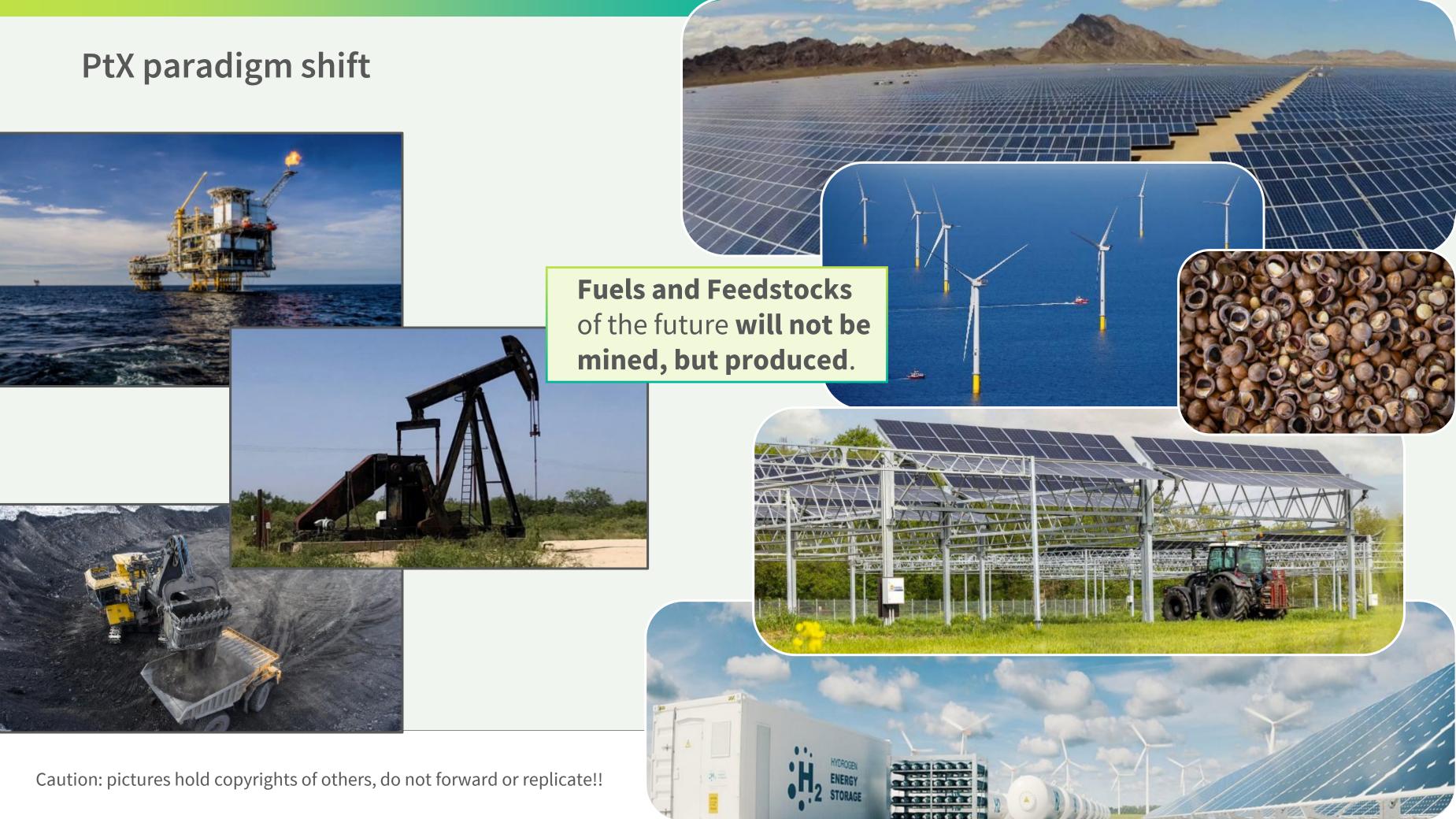
ZAF International-PtX-Hub 202402 Carbon-Sources-for-PtX-in-South-Africa.pdf

Thank you!

Ruth Barbosa Advisor Capacity Development & PtX.Aviation International PtX Hub ruth.barbosa@giz.de

© International PtX Hub Berlin - Catalysing defossilisation globally info@ptx-hub.org

Scan to get connected!


Gefördert dur

Durchaeführt

Cost comparison and current volumes for selected types of aviation fuel

\$6.000,00

\$5.000,00

\$4.000,00

Cost [US\$/t] \$3.000,00

\$2.000,00

\$1.000,00

\$0,00

Global jetfuel demand

330 Mt 2024

2030 440 Mt

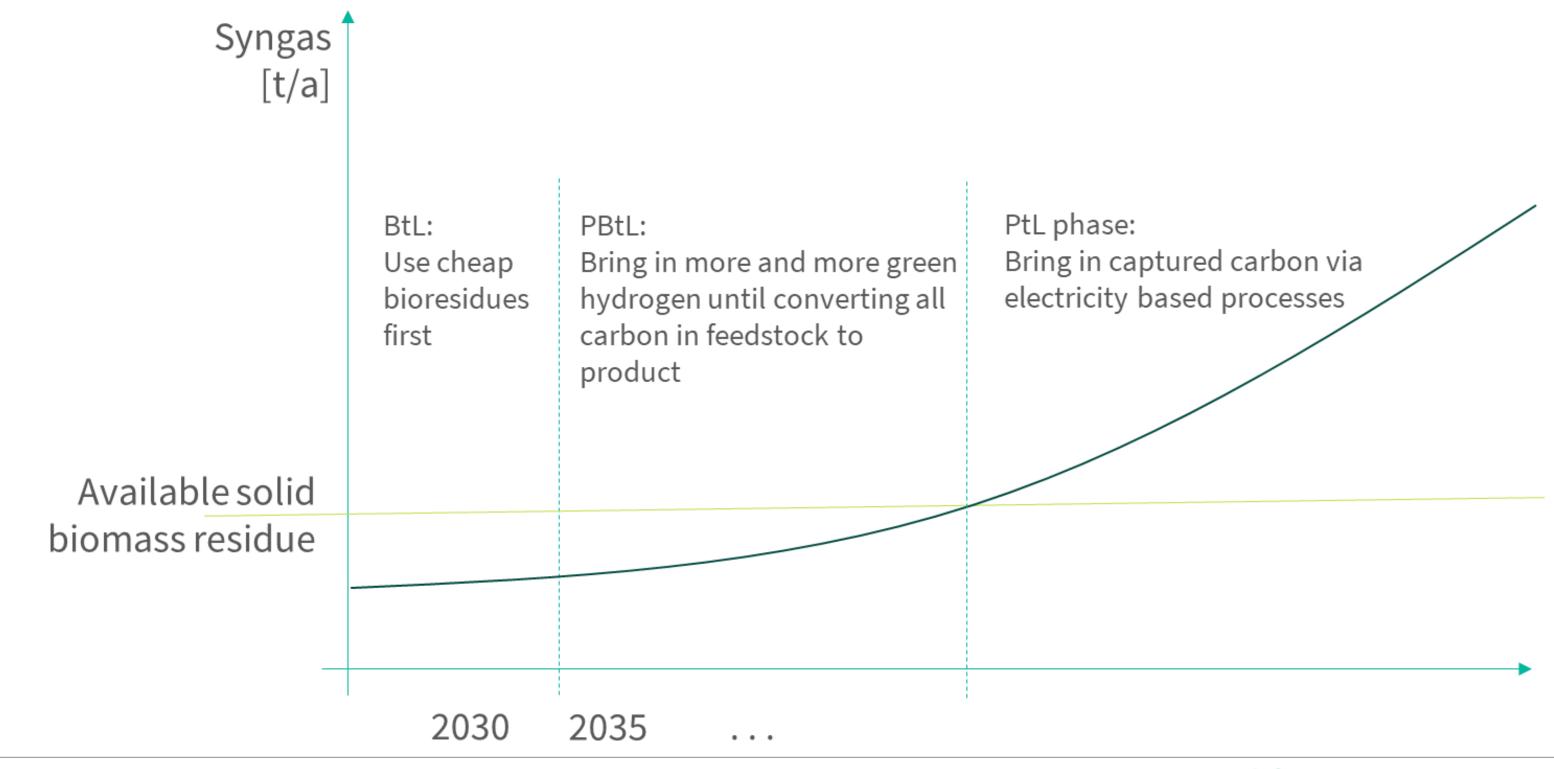
Availability	(2024,	global)

Potential	(long-term,	global)
------------------	-------------	---------

_	Residual biomass can contribute
	economically and in significant
	quantities to jetfuel production
ľ	

	Fossil Jetfuel	HEFA	BtL	PtL
ıl)	330 Mt/a	1.7 Mt/a	marginal	5 t/a
ıl)	sustainability restraint	10 - 25 Mt/a	60 Mt/a	unlimited

Courtesy of:



Phase in strategy for large volumes of SAF

